Tutorial 6: Functions

Mid-way through the semester, we take a break from data visualization to teach you how to create your own functions in R.

Most of the commands you use in R are functions themselves. This means that you already know how to use a function, even if you didn’t realize it. Today you will learn how to make your very own R function.

Make sure to write today’s tutorial in an R script. You can put it in quarto when you’re done, but do not start programming in a quarto doc. In addition, make sure to put

rm(list=ls())

at the beginning of your code. I recommend you always do this; it is particularly important today. If strange things are happening in your code, consider running it from the beginning, and the above command will clear everything in R’s memory. I tell you write a R script so that you can more easily keep track of what functions are defined where and apply to what.

As to when to use a function, in the immortal words of Hadley Wickham, “You should consider writing a function whenever you’ve copied and pasted a block of code more than twice (i.e. you now have three copies of the same code)” (see this here).

The ability to create functions is one of the most powerful tools that statistical programming gives you. Good programming relies heavily on functions. Cut and paste is prone to errors. Furthermore, while cut and paste always seems easiest when you need to do things once, my experience with programming suggests that your first graph is never your last graph. When you need to make modifications, particularly ones that are the same across a set of graphs, you will be happy you chose to make a function.

This class gives you an initial introduction to functions. If you’d like to deeper, I recommend Hadley Wickman’s Advanced R notes.

A. What is a function?

In this section, we define what a function is and explain its parts.

The example below shows the bones of any basic function. The first part function.name is the name of the function. You can choose any name you’d like for the function.

function.name <- function(arg1, arg2){
  # stuff your function does
}

Beware, however, that if you use the name of an existing function in R, such as plot, when you call plot, you will get your new function, instead of R’s usual `plot’. Bottom line: stay away from existing names if at all possible. You can ask R whether it has any functions of a given name by typing

? sum
starting httpd help server ... done

When you type the above, a help window pops up – this means there is an existing function named sum. So don’t use sum! What about dogs?

? dogs
No documentation for 'dogs' in specified packages and libraries:
you could try '??dogs'

R tells us it can’t find any functions called dogs, and you are good to go.

Every function also needs the word function – this is the same across all functions, and tells R that you are making a function. You cannot change this word.

The variables arg1 and arg2 are the inputs to the new function. They define what you can put into the function. Functions can have no inputs, or thousands of inputs. This particular example has two.

Once you’ve given R values for arg1 and arg2, R undertakes the commands inside the curly brackets. These commands are known as the ``function body.’’

Notice that you’ve already used many functions. For example, https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/mean` is a function that calculates the mean of a variable. We write it as

df$mean.val <- mean(x = df$x1, na.rm = TRUE)

It takes three named inputs: x, na.rm and trim. The final input is optional, but you have used the first two already. You know how to use a function, and now you’ll learn how to write one.

B. A first function

B.1. A very first function

Let’s begin with a very simple function that takes one value to the power of the other. As we construct it, this function has arguments x and y. Whatever value you give R for x, it will take it to the power y. We call this new function summer.

Before I define it, I check to see if a function by this name already exists.

? summer
No documentation for 'summer' in specified packages and libraries:
you could try '??summer'

No function exists by this name. This check is not required, but it is good practice, since you can create trouble by naming your function with a name that already exists as a R function.

Now let’s define the function:

summer <- function(x,y){
  x^y
}

In the summer function, the arguments are x and y. The body is \(x^y\).

Having defined the function, we’d now like to call it. The most clear way of calling a function is to associate each argument with its value, as in

summer(x=1,y=2)
[1] 1

This call should look familiar. You’ve been using functions all semester. Now you’re writing one of your own.

The summer function returns a value of 1. Note that \[ 1^2 = 1\], so all is good. as it should.

Alternatively, you can make the same call by writing

summer(1,2)
[1] 1

This works, but is bad practice. Code like this is hard to decipher and debug.

Now try

summer(x = 2, y = 1)
[1] 2

Note that this does not yield the same outcome. Homework question 1 asks you why.

Finally, the call below does not work at all. We’ve specified nothing for y, and all arguments are mandatory unless a default value is specified (which we’ll learn how to do in a bit).

summer(x = 1,)

B.2. A Slightly More Complicated Function

The example in B.1. was so simple that you might wonder why we bother with functions. Let us start working toward something slightly more complicated.

Suppose you’d like to know the marginal tax rate for a specific income. Maybe you’d like to automatically print a chart title that says what the marginal tax rate of a given income is, for example (so you can update the picture without looking up the marginl tax rate each time).

The marginal tax rate is the tax you pay on your last dollar of earnings. In the US system, rates are progressive, so that higher incomes pay higher tax rates. In other words, your first $\(x\) of income is taxed at rate \(a\). Income greater than \(x\), but less that \(y\) is taxed at rate \(b\), where usually \(b>a\). The rate associated with your “tax bracket” is your marginal tax rate.

A starting point for this kind of work is a function that delivers a marginal tax rate based on an input income. We do this below, with a thanks to Bankrate for helpful marginal tax rates (for single people; page also has married, if you’re curious).

We are also introducing a new function: case_when() from the tidyverse (see official documentation here). The ifelse function is great if you have only two cases to define. With more than two cases, you can write a nested ifelse() – this is do-able, but it’s not ideal because it is hard to read and de-bug. Instead of a nested ifelse(), we use case_when(), which has the following syntax (note that we call the tidyverse library to access this command):

ndf <- mutate(.data = dataframe,
              newvar = case_when(condition1 ~ case1.label.here,
                                 condition2 ~ case2.label.here))

We use mutate() to tell R we want to change the dataframe. This change does not change the number of observations in the dataframe (aka the number of rows). We create a new dataframe ndf that will have the new variable newvar, where newvar is created via special cases of an old variable.

For example, if we had a list of colors, we could categorize them into blunter categories with thi command:

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
df <- data.frame(color = c("mauve","flamingo","petal","cerulean","azure","teal"))
df
     color
1    mauve
2 flamingo
3    petal
4 cerulean
5    azure
6     teal
df <- mutate(.data = df,
             new.var = case_when(color %in% c("mauve","flamingo","petal") ~ "pink",
                                 color %in% c("cerulean","azure","teal") ~ "blue"))
df
     color new.var
1    mauve    pink
2 flamingo    pink
3    petal    pink
4 cerulean    blue
5    azure    blue
6     teal    blue

Now we’ll use case_when() in combination with a function to delineate the marginal tax rate for any given income level. Here we don’t need to use mutate() because we are not modifying a dataframe. Instead, we are taking a value (income) and figuring out between which case it lies.

single.marg.tax.rate <- function(income){
  mr <-
    case_when(income < 9950 ~ 0.10,
              income >= 9950 & income < 40525 ~ 0.12,
              income >= 40545 & income < 86375 ~ 0.22,
              income >= 86375 & income < 164925 ~ 0.24,
              income >= 164925 & income < 209425 ~ 0.32,
              income >= 209425 & income < 532600 ~ 0.35,
              income >= 532600 ~ 0.37)
  print(paste0("marginal tax rate for income ",income, " is ", mr))
} 

This function takes the argument income and finds the bracket into which that income fits. It then outputs the tax rate and income in a print statement.

Give it a try!

Here’s my first attempt:

single.marg.tax.rate(income = 10000)
[1] "marginal tax rate for income 10000 is 0.12"

This seems to find the right marginal tax rate, according to the Bankrate page.

Does it work for other incomes?

single.marg.tax.rate(income = 50000)
[1] "marginal tax rate for income 50000 is 0.22"
single.marg.tax.rate(income = 500000)
[1] "marginal tax rate for income 5e+05 is 0.35"

You could do what we just did by copying and pasting the case_when() statement a number of times, or by looking up values by hand. So why bother with this function? The function really shines when you’ve made a mistake with one number in the brackets. If you make a mistake and you’ve done things by hand, you need to check every individual decision you made. If you made a function, you re-code the function and you are done.

B.3. A function in a separate file

Sometimes you build a function that you would like to use in multiple programs. If you’d like to do this, you can put your R function in its own .R file.

For example, I put a variant of the summer function we created above in a separate new R file, and saved it as summer2_func.R (don’t use dots in the file name, except for the .R extension). My file looks like

summer2 <- function(x,y,z){
  x^y + z
}

I can now call this function and get a result:

source("H:/pppa_data_viz/2018/tutorials/lecture12/summer2_func.R")
summer2(x = 5, y = 3, z = 1)
[1] 126

C. Other Function Argument Basics

In this section, we discuss more features of function arguments: how they work, how you name them, and setting defaults.

C.1. More on function arguments

Suppose that we would like to run the function summmer2, but we don’t want to add anything to \(x^y\) (what the z variable does).

Let’s try to run it two ways:

summer2(x = 5, y = 3, z = 0)
[1] 125

This one runs, and properly gives us \(5^3 + 0 = 125\).

Now let’s try

summer2(x = 5, y = 3)

This one should give an error message. Why? R is trying to evaluate x^y + z, but can’t find a value for z – so it breaks.

To make sure you understand why R is breaking, look at the following example:

summer3 <- function(x,y,z){
  x^y 
}

summer3(x = 5, y = 3)
[1] 125

This does not generate an error. The homework asks you why, even without a value for z.

Note that you can also put R objects into a function call. Let’s let natl.mn.income be $53,719, which is the 2014 US mean income. We’ll then use this object in the summer function call.

natl.mn.inc <- 53719
summer(x = natl.mn.inc,y = 1)
[1] 53719

C.2. Defaults

One way to avoid the error we have in section C.1. from calling summer2(5,3) would be to set a default value for z. Let us set the default value for z as 0.

summer4 <- function(x, y, z = 0){
  x^y + z
}

summer4(x = 5, y = 3)
[1] 125

Now if you don’t specify a value for z, R assumes that it is zero. If you do specify a value, that value replaces zero.

C.3. Calling the right type of variable

You should also be careful that the type of input argument you give to the function matches how the function will use that argument.

The text below yields an error:

summer(x = "fred", y = "ted")

Explain why in homework question 3.

D. What the function outputs

Sometimes you’d like a function to just calculate something and print the result to the screen. Other times, it’s helpful to have a function return something to you that you can use in the rest of the code. For example, suppose we’d like to use the marginal tax rate that the function single.marginal.tax.rate creates.

Can I work with this new marginal tax rate in the rest of the code?

single.marg.tax.rate(income = 500000)
taxes.paid <- (500000 - 418401)*mr

This second command gives an eror. Why is this? Didn’t we just create mr in this function? Why doesn’t this object now exist?

This brings up a key element of functions. Everything that you create in the function is “local” to the function unless you specifically tell R you want to take it out of the function. To tell R to take something out of the function, you need to “return” the value. “Returning” the value means taking something that exists just in the function and making it exist in the rest of the code as well. We will learn how to do this in this section.

As an aside, when you write mr in plain R code, R will print the value of mr. When you write mr inside a function, R doesn’t print the value of mr to the console. To see the value of mr, you need to write print(mr). I also illustrate this point in the code below.

Running our original function again, we see that just running it in plain code delivers the marginal tax rate to the console.

single.marg.tax.rate(income = 500000)
[1] "marginal tax rate for income 5e+05 is 0.35"

Making the function deliver something to a new object prints nothing, but gives no error.

out <- single.marg.tax.rate(income = 500000)
[1] "marginal tax rate for income 5e+05 is 0.35"

Let’s look at the new object:

out
[1] "marginal tax rate for income 5e+05 is 0.35"

It’s a text string! Which is the last thing the function did.

If we want the marginal tax rate as a number, we need to modify the function. Let’s make a new function called single.marg.tax.rate.v2.

single.marg.tax.rate.v2 <- function(income){
  mr <-
    case_when(income < 9950 ~ 0.10,
              income >= 9950 & income < 40525 ~ 0.12,
              income >= 40545 & income < 86375 ~ 0.22,
              income >= 86375 & income < 164925 ~ 0.24,
              income >= 164925 & income < 209425 ~ 0.32,
              income >= 209425 & income < 532600 ~ 0.35,
              income >= 532600 ~ 0.37)
  print(paste0("marginal tax rate for income ",income, " is ", mr))
  mr
} 

Let’s now run the function, and also put its output into out2.

single.marg.tax.rate.v2(income = 500000)
[1] "marginal tax rate for income 5e+05 is 0.35"
[1] 0.35
out2 <- single.marg.tax.rate.v2(income = 500000)
[1] "marginal tax rate for income 5e+05 is 0.35"
out2
[1] 0.35

This output is now a number, since listing mr is the last thing the function did. We can now use out2 in our main program. Below I calculate the taxes paid, for someone earning $500,000, on income above $418,401. (This person does not pay the marginal tax rate of 37 percent on all of their income – just income above $418,401. For income between $209425 and $418,401, the person pays a rate of 32 percent. Below that – from about $160,000 to $200,000 they pay 24 percent.)

taxes.paid <- (500000 - 418401)*out2
taxes.paid
[1] 28559.65

E. Functions for doing things with dataframes

To illustrate the value of functions, let’s automate some repetitive operations. A good practice when building a function is to write out one instance of what you’d like to do in plain code. Then work on the function that automates it. You can write the function directly, but this is best for when you are quite comfortable with functions.

E.1. Load DC crash data using a API

Begin by loading the csv with crashes in DC, the source of which is here.

You can load these data in a bunch of different ways. Here are two alternatives. The first is to download the spreadsheet, read it into R, and find out what variables this dataframe has. I’ve done this already, and to be sure you’re using the same data, you can use the data I downloaded and find it here.

I am using a file that was last updated March 3, 2025.

Here is the code to read in the csv file and find the names of the variables.

crashes <- read.csv("H:/pppa_data_viz/2025/tutorial_data/tutorial_06/Crashes_in_DC_20250303.csv")

The second way to grab the data is via the API, which we discussed in Tutorial 5. This likely no longer works, because DC puts a download limit of 1000 rows for any API call. I’ve written OpenData DC about this, but have not heard back.

When this used to work, this is the code I used.

# load the required library
require(geojsonsf)
require(tidyverse)
require(sf)
# --- name the location of the data
# --- found this on the -info- section of the webpage
crashessjson <- "https://maps2.dcgis.dc.gov/dcgis/rest/services/DCGIS_DATA/Public_Safety_WebMercator/MapServer/24/query?outFields=*&where=1%3D1&f=geojson"
crashessf <- geojson_sf(crashessjson)
# make a copy of the dataframe 
crashesnosf <- crashessf
# get rid of the geometry
st_geometry(crashesnosf) <- NULL

For our purposes today, were the API working, we would grab these data in GeoJSON format data and get rid of the spatial component. Below, we name the location of the file in the object crashessjson. We would then use geojson_sf to make a simple feature from the geojson file.

E.2. Understand the data

Before we get started on iterative programming, let’s first take a look at this dataframe to understand how it’s set up and what variables it has.

str(crashes)
'data.frame':   326067 obs. of  66 variables:
 $ X                         : num  -8570973 -8575714 -8569719 -8573989 -8574611 ...
 $ Y                         : num  4714620 4707720 4713447 4711847 4709185 ...
 $ CRIMEID                   : num  23550481 23553086 23553677 23555206 23559893 ...
 $ CCN                       : chr  "10185907" "10186639" "10186645" "11000000" ...
 $ REPORTDATE                : chr  "2010/12/29 02:55:00+00" "2010/12/30 18:30:00+00" "2010/12/30 18:50:00+00" "2011/02/24 00:30:00+00" ...
 $ ROUTEID                   : chr  "12081442" "11050892" "12060582" "11000602" ...
 $ MEASURE                   : num  4999 2417 2964 3549 2002 ...
 $ OFFSET                    : num  24.34 12.94 0 37.69 0.01 ...
 $ STREETSEGID               : int  444 -9 10503 -9 9466 -9 8978 5851 -9 -9 ...
 $ ROADWAYSEGID              : int  19193 21676 7890 24422 10207 32509 17046 18269 27351 28965 ...
 $ FROMDATE                  : chr  "2010/12/28 05:00:00+00" "2010/12/30 05:00:00+00" "2010/12/29 05:00:00+00" "2011/02/23 05:00:00+00" ...
 $ TODATE                    : logi  NA NA NA NA NA NA ...
 $ ADDRESS                   : chr  "5100 SOUTH DAKOTA AVE./GALLATIN ST. N.E." "1600 K ST NW" "1600 MICHIGAN AVE NE" "602 MORTON ST NW" ...
 $ LATITUDE                  : num  39 38.9 38.9 38.9 38.9 ...
 $ LONGITUDE                 : num  -77 -77 -77 -77 -77 ...
 $ XCOORD                    : num  400472 396795 401466 398161 397655 ...
 $ YCOORD                    : num  142521 137173 141629 140419 138323 ...
 $ WARD                      : chr  "Ward 5" "Ward 2" "Ward 5" "Ward 1" ...
 $ EVENTID                   : chr  "{CCD302A6-9FE5-47D8-BF53-1DBCE101644A}" "{CBB32A6D-7B77-4262-913F-C5C691D2A06A}" "{A291618B-054E-4F9B-8070-9D05841358B0}" "{E7353703-4376-4301-9181-522729EDEDA9}" ...
 $ MAR_ADDRESS               : chr  "5100 SOUTH DAKOTA AVENUE NE" "1600 K STREET NW" "1600 MICHIGAN AVENUE NE" "602 MORTON STREET NW" ...
 $ MAR_SCORE                 : num  93.3 100 100 100 100 ...
 $ MAJORINJURIES_BICYCLIST   : int  0 0 0 0 0 0 0 0 0 0 ...
 $ MINORINJURIES_BICYCLIST   : int  0 0 0 0 0 0 0 0 0 0 ...
 $ UNKNOWNINJURIES_BICYCLIST : int  0 0 0 0 0 0 0 0 0 0 ...
 $ FATAL_BICYCLIST           : int  0 0 0 0 0 0 0 0 0 0 ...
 $ MAJORINJURIES_DRIVER      : int  0 0 0 0 0 2 0 0 0 0 ...
 $ MINORINJURIES_DRIVER      : int  0 0 0 0 0 0 0 0 0 0 ...
 $ UNKNOWNINJURIES_DRIVER    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ FATAL_DRIVER              : int  0 0 0 0 0 0 0 0 0 0 ...
 $ MAJORINJURIES_PEDESTRIAN  : int  0 0 0 0 1 0 0 0 0 0 ...
 $ MINORINJURIES_PEDESTRIAN  : int  0 0 0 0 0 0 0 0 0 0 ...
 $ UNKNOWNINJURIES_PEDESTRIAN: int  0 0 0 0 0 0 0 0 0 0 ...
 $ FATAL_PEDESTRIAN          : int  0 0 0 0 0 0 0 0 0 0 ...
 $ TOTAL_VEHICLES            : int  2 2 2 0 1 2 2 1 2 2 ...
 $ TOTAL_BICYCLES            : int  0 0 0 0 0 0 0 0 0 0 ...
 $ TOTAL_PEDESTRIANS         : int  0 0 0 0 1 0 0 0 0 0 ...
 $ PEDESTRIANSIMPAIRED       : int  0 0 0 0 0 0 0 0 0 0 ...
 $ BICYCLISTSIMPAIRED        : int  0 0 0 0 0 0 0 0 0 0 ...
 $ DRIVERSIMPAIRED           : int  0 0 0 0 0 0 0 0 0 0 ...
 $ TOTAL_TAXIS               : int  0 0 0 0 0 0 0 0 1 0 ...
 $ TOTAL_GOVERNMENT          : int  0 1 0 0 0 0 0 0 0 0 ...
 $ SPEEDING_INVOLVED         : int  0 0 0 0 0 0 0 1 0 0 ...
 $ NEARESTINTROUTEID         : chr  "12000802" "11001602" "12001602" "11053752" ...
 $ NEARESTINTSTREETNAME      : chr  "8TH ST NE" "16TH ST NW" "16TH ST NE" "LAMONT ST NW" ...
 $ OFFINTERSECTION           : num  0.18 35.12 50.73 1.18 18.08 ...
 $ INTAPPROACHDIRECTION      : chr  "Northwest" "West" "East" "Southeast" ...
 $ LOCATIONERROR             : chr  "" "f7578713f771d715089b9752ae2142cb Blockkey ERROR. f7578713f771d715089b9752ae2142cb Blockkey ERROR.  N" "" "" ...
 $ LASTUPDATEDATE            : chr  "" "" "" "" ...
 $ MPDLATITUDE               : num  NA NA NA NA NA NA NA NA NA NA ...
 $ MPDLONGITUDE              : num  NA NA NA NA NA NA NA NA NA NA ...
 $ MPDGEOX                   : num  NA NA NA NA NA NA NA NA NA NA ...
 $ MPDGEOY                   : num  NA NA NA NA NA NA NA NA NA NA ...
 $ FATALPASSENGER            : int  0 0 0 0 0 0 0 0 0 0 ...
 $ MAJORINJURIESPASSENGER    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ MINORINJURIESPASSENGER    : int  0 0 0 0 0 1 0 0 0 0 ...
 $ UNKNOWNINJURIESPASSENGER  : int  0 0 0 0 0 0 0 0 0 0 ...
 $ MAR_ID                    : int  13538 299579 60550 285299 239055 262656 273707 806818 257819 230173 ...
 $ BLOCKKEY                  : chr  "d0ed1b16175a272ae7f1142655614d7a" "f7578713f771d715089b9752ae2142cb" "32b260c5747adf0393fbb2a2da41b3eb" "5bfdfd2a893223a1aa9c3563d6b89a4e" ...
 $ SUBBLOCKKEY               : chr  "d0ed1b16175a272ae7f1142655614d7a" "8127a1c6737ab04c44bac1414ad10788" "32b260c5747adf0393fbb2a2da41b3eb" "5bfdfd2a893223a1aa9c3563d6b89a4e" ...
 $ CORRIDORID                : chr  "12081442_1" "13061162_1" "12060582_1" "Blockkey Not Found on Corridor" ...
 $ NEARESTINTKEY             : chr  "885cf46b93d3ccee8f3c51b08822491a" "eb9ec54c8003b9120b27bb44d03baf01" "0a5da39c8be6fcf3475e9b03e014c968" "de2b4349f39cf3accc9457e26292782c" ...
 $ MAJORINJURIESOTHER        : int  NA NA NA NA NA NA NA NA NA NA ...
 $ MINORINJURIESOTHER        : int  NA NA NA NA NA NA NA NA NA NA ...
 $ UNKNOWNINJURIESOTHER      : int  NA NA NA NA NA NA NA NA NA NA ...
 $ FATALOTHER                : int  NA NA NA NA NA NA NA NA NA NA ...
 $ OBJECTID                  : int  322162400 322162401 322162402 322162403 322162404 322162405 322162406 322162407 322162408 322162409 ...

E.3. Create new output via a function with one input

Suppose we’d like to run a couple of commands on multiple variables. This is something we can do with a function. Let’s suppose that we’d like to

  • output summary statistics using summary()
  • look at number of missings with table()
  • look at distribution of outcomes with table()

Here’s an example of this code for the variable TOTAL_VEHICLES

summary(crashes$TOTAL_VEHICLES)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000   2.000   2.000   1.972   2.000  16.000 
table(crashes$TOTAL_VEHICLES)

     0      1      2      3      4      5      6      7      8      9     10 
  1527  42007 255074  21565   4350   1040    289    132     40     27      4 
    11     12     13     14     16 
     4      5      1      1      1 
table(is.na(crashes$TOTAL_VEHICLES))

 FALSE 
326067 

Now suppose we’d like to do this for all the variable that start with “TOTAL.” We’ll make a function to do this. But first let’s start with a function that does not work. I do this to point out how you need to adjust your coding to make a function work.

You can try to run this, and it should generate an error:

sumup <- function(varin){
  print(summary(crashes$varin))
  print(table(crashes$varin))
  print(table(is.na(crashes$varin)))
}
sumup(varin = TOTAL_VEHICLES)
Length  Class   Mode 
     0   NULL   NULL 
< table of extent 0 >
< table of extent 0 >

When you write crashes$varin, R looks for a variable named varin – it doesn’t replace varin with the text you’re passing in.

Instead, you need to write the variables inside a double bracket [[]], rather than the dollar sign notation. Here R does know to replace the varin marker with its value.

sumup2 <- function(varin){
  print(paste0("inside the function for variable ",varin))
  print(summary(crashes[[varin]]))
  print(table(crashes[[varin]]))
  print(table(is.na(crashes[[varin]])))
}
sumup2(varin = "TOTAL_VEHICLES")
[1] "inside the function for variable TOTAL_VEHICLES"
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000   2.000   2.000   1.972   2.000  16.000 

     0      1      2      3      4      5      6      7      8      9     10 
  1527  42007 255074  21565   4350   1040    289    132     40     27      4 
    11     12     13     14     16 
     4      5      1      1      1 

 FALSE 
326067 

Now that we know the function works, we can use it for other variables:

sumup2(varin = "MAJORINJURIES_DRIVER")
[1] "inside the function for variable MAJORINJURIES_DRIVER"
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
0.00000 0.00000 0.00000 0.05522 0.00000 7.00000 

     0      1      2      3      4      5      7 
310250  13788   1899    106     20      3      1 

 FALSE 
326067 
sumup2(varin = "MINORINJURIES_DRIVER")
[1] "inside the function for variable MINORINJURIES_DRIVER"
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  0.0000  0.0000  0.1748  0.0000 11.0000 

     0      1      2      3      4      5      6     11 
275794  44067   5772    376     44     10      3      1 

 FALSE 
326067 
sumup2(varin = "TOTAL_BICYCLES")
[1] "inside the function for variable TOTAL_BICYCLES"
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-9.00000  0.00000  0.00000  0.01953  0.00000  3.00000 

    -9      0      1      2      3 
     1 319797   6163    104      2 

 FALSE 
326067 
sumup2(varin = "TOTAL_PEDESTRIANS")
[1] "inside the function for variable TOTAL_PEDESTRIANS"
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
 0.00000  0.00000  0.00000  0.05301  0.00000 12.00000 

     0      1      2      3      4      5      6      7      8     12 
309982  15117    817    105     30      8      4      1      2      1 

 FALSE 
326067 

Now we’ve generated summary statistics for a set of variables. If we wanted to add another summary statistic, we could just modify the function.

E.4. Create new output via a function with one input

But what we’ve just done doesn’t really illustrate the power of functions because we are just changing one element each time we’re going through the function. If you’re familiar with loops in other programming, this is doing what a loop does.

A function can iterate through two (or more) conditions, which makes it more powerful than a loop. Let’s use that power to look at the summary statistics we already have, but for day and night separately.

Unfortunately, this dataframe doesn’t have day and night – but it does have a a time from which we can create a day and night variable

crashes$time <- substr(x = crashes$REPORTDATE, start = 12, stop = 13)
table(crashes$time)

         00    01    02    03    04    05    06    07    08    09    10    11 
 1349 12149 12384 11385  9678 75172 36936  5348  5244  5157  4674  4755  5840 
   12    13    14    15    16    17    18    19    20    21    22    23 
 8323 10086 10722 10897 11228 11754 11355 11289 12139 13000 12791 12412 
#2021/01/07 03:52:24+00
#1234567890123456789012

I look at the distribution of times here and I’m a little suspicious – does the evening shift end at 5 am? I don’t believe that most accidents occur at 5 am. But for the purposes of this assignment, we’ll just continue and create a variable that is day or night.

crashes$day <- ifelse(test = as.numeric(crashes$time) >= 6 & as.numeric(crashes$time) <= 18,
                      yes = 1,
                      no = 0)
table(crashes$day)

     0      1 
219335 105383 

Now we have a variable that is equal to 1 if the accident took place during the day and 0 if the accident took place at night.

Let’s use this new variable to re-assess our previous analysis. Now our function will make data subsets for day and or night and re-do the same analysis.

sumup3 <- function(varin, daytime){
  c2 <- crashes[which(crashes$day == 1),]
  print(paste0("inside the function for variable ",varin, " when day == ",daytime))
  print(summary(c2[[varin]]))
  print(table(c2[[varin]]))
  print(table(is.na(c2[[varin]])))
}
sumup3(varin = "TOTAL_VEHICLES", daytime = 1)
[1] "inside the function for variable TOTAL_VEHICLES when day == 1"
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000   2.000   2.000   1.965   2.000  16.000 

    0     1     2     3     4     5     6     7     8     9    10    11    12 
  369 14822 81268  6885  1476   393    92    45    15    12     1     1     2 
   13    16 
    1     1 

 FALSE 
105383 

This general principle of referring to variables in double brackets works in all Base R commands, and the general principles of functions work for all R commands.

However, there are some strange nuances with tidyverse commands, as we’ll explore in the next section.

F. Functions and tidyverse

In this step, we explain why it is that tidyverse commands are tricky in functions. We then turn to how to deal with this, and conclude with how to make functions for graphs.

F.1. Why tidyverse is Tricky

Now we turn to how to use functions with tidyverse commands. One of the things that makes tidyverse commands pleasant to use relative to Base R is the ability to dispense with the full dataframe name for variables.

For example, compare Base R’s way of subsetting with tidyverse’s:

# base R
dayonly <- crashes[which(crashes$day == 1),]

# tidyverse
dayonly <- filter(.data = crashes, day == 1)

You probably find the filter way easier to understand. It is, but it is not easier to put in a function.

Here’s why. It seems that this kind of function, where we tell R some input variables, should work.

graphit <- function(xvar,namer1){
  ggplot() + 
    geom_histogram(data = crashes, 
         mapping = aes(x= xvar)) +
    labs(title = paste0("Histogram of ",namer1),
         x = namer1)
}

But when you test it, it does not:

graphit(xvar = WARD, 
        namer1 = "Ward")

This is because of the non-standard way in which all tidyverse packages evaluate R code. For more on that, see this document.

F.2. Fixes

However, there is a happy fix (many thanks to this post). Put the variables you want to refer to inside double curly braces: {{}}. Here is an example. Notice that when we call the function, the variable name is not in quotes, as it was above. Here it is unquoted, as it generally is in tidyverse commands.

graphit2 <- function(xvar,namer1){
  ggplot() + 
    geom_histogram(data = crashes, 
         mapping = aes(x = {{xvar}})) +
    labs(title = paste0("Histogram of ",namer1),
         x = namer1)
}
graphit2(xvar = TOTAL_VEHICLES, namer1 = "total vehicles involved in crash")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

You should now have enough basics to be able to write functions on your own. I strongly encourage you to practice using them. They streamline both code and thinking, and they are the key to programming efficiently and reliably.

G. Homework

  1. In section B.1., why do
summer(x = 1, y = 2)
summer(x = 2, y = 1)

not yield the same output? Write in math what each one does.

  1. In section C.1., why does the call summer3(x = 5, y = 3) return a value when summer2(x = 5, y = 3) does not?

  2. In C.2., why does summer(x = "fred", y = "ted") yield an error?

  3. Fix the function in part F to remove the graph background. In ggplot we remove the grey background by adding to the theme element:

plotto <- ggplot() +
  geom_whatever(data = df,
                mapping = aes(x = var, y = yvar)) +
  theme(panel.background = element_blank())

You can also get rid of the gridlines with

  theme(panel.background = element_blank(),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank())
  1. Make a function that automates a graphics operation of interest to you, using a dataset not from this tutorial.