Admin

0: Two Curves Shift

2: *E_D* and Businesses

5: Other Elasticities

4: *Es* 00000

Recap 000

Lecture 5: Elasticity

September 24, 2024

・ロット (四)・ (目)・ (日)・ (日)

- 1. Administrative Notes
- 2. Ripped from headlines
- 3. Chapter 4 addendum: when both curves shift
- 4. Chapter 5: Elasticity
 - 4.1 Price elasticity of demand
 - 4.2 How businesses (and government) use demand elasticity

4: Ec

- 4.3 Other demand elasticities
- 4.4 Price elasticity of supply
- 4.5 Importance of price elasticity of supply to government

2: *E_D a 0000 0000*

E_D and Businesses

5: Other Elasticit

Reca

4: Ec

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Course Administration

- 1. Ripped from Headlines sign-up
 - You are responsible for being on the schedule
- 2. Lecture 6 (next class) will be a set of pre-recorded videos, posted by class time
- 3. Lecture 7 handout is posted let's review
- 4. Midterm review, 10/9, 6 to 8 pm, 1957 E St. NW, Room 316
- 5. Lecture 8 is the midterm
- 6. Grades should be up in Blackboard
- 7. Ch. 5 End-of-Chapter problems posted as an assignment with no due date
- 8. Problem Set 5 posted as an assignment

2: *E_D* and 0000

E_D and Businesses

5: Other Elasticit

Rec

4: Ec

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Course Administration

- 1. Ripped from Headlines sign-up
 - You are responsible for being on the schedule
- 2. Lecture 6 (next class) will be a set of pre-recorded videos, posted by class time
- 3. Lecture 7 handout is posted let's review
- 4. Midterm review, 10/9, 6 to 8 pm, 1957 E St. NW, Room 316
- 5. Lecture 8 is the midterm
- 6. Grades should be up in Blackboard
- 7. Ch. 5 End-of-Chapter problems posted as an assignment with no due date
- 8. Problem Set 5 posted as an assignment
- 9. Any other questions or outstanding issues?

RFH

1: *E_D* 00000000000000000000 2: E_D and Businesses

5: Other Elasticities

4: *Es* 00000

How What You're Learning is Policy-Relevant

Ripped from Headlines presentation(s)

As a reminder, next week Send the article by Wednesday midnight for approval

Afternoon, joint presentation

Finder	Presenter
Sawyer S.	Matias B.
Yemi F.	Emma D.
Laiba K.	

Evening, individual presentation

Finder	Presenter
Nathan D.	Adair S.
Jackie G.	Chase K.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

RFH •00 1: *E_D* 00000000000000000000 :: E_D and Businesses

5: Other Elasticities

4: *Es* 00000

How What You're Learning is Policy-Relevant

Ripped from Headlines presentation(s)

As a reminder, next week Send the article by Wednesday midnight for approval

Afternoon, joint presentation

Finder	Presenter
Sawyer S.	Matias B.
Yemi F.	Emma D.
Laiba K.	

Evening, individual presentation

Finder	Presenter
Nathan D.	Adair S.
Jackie G.	Chase K.

Check assignments for next week! I'll remind in recorded video.

: E_D

2: *E_D* and Businesses

5: Other Elasticities

4: *Es* 00000

Today's Ripped from the Headlines

Afternoon, joint presentation

Finder	Presenter
Matt W.	Riddhi P.
Raquel L.	Tosha S.
Sarah C.	

Evening,	joint	presentation
----------	-------	--------------

Finder	Presenter
Saumya M.	Sydney M.
	Jackie G.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- 1. Chapter 4 addendum: when both curves shift
- 2. Chapter 5: Elasticity
 - 2.1 Price elasticity of demand
 - 2.2 How businesses (and government) use demand elasticity
 - 2.3 Other demand elasticities
 - 2.4 Price elasticity of supply
 - 2.5 Importance of price elasticity of supply to government

Admin

0: Two Curves Shift

1: E_D 00000000000000 2: *E_D* and Businesses

5: Other Elasticities

4: *Es* 00000

Recap 000

Ch. 4: 4. When Both Supply and Demand Shift

What Should Have Been More Clear: What We Learn When S & D Shift

- I got multiple after-lecture questions about which shifts
- This is deducible from graphs no need to memorize
- We will deduce two cases
- You are responsible for all 4

0: Two Curves Shift

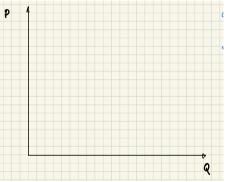
5: Other Elasticities

4: Es

Demand Shifts Inward, Supply Shifts Outward

• Why might this happen?

- We learn that peaches give acne
- Weather is particularly good for peaches this year

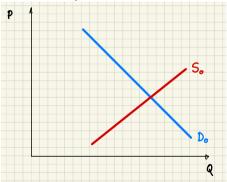

- Why might this happen?
- We learn that peaches give acne

0: Two Curves Shift

0000

 Weather is particularly good for peaches this year

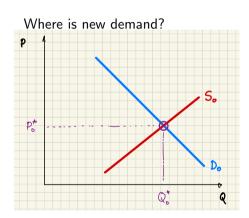
Where do demand and supply go?


- Why might this happen?
- We learn that peaches give acne

0: Two Curves Shift

0000

• Weather is particularly good for peaches this year



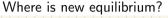
- Why might this happen?
- We learn that peaches give acne

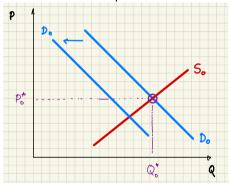
0: Two Curves Shift

0000

 Weather is particularly good for peaches this year

4: *Es* 00000


Recaj 000

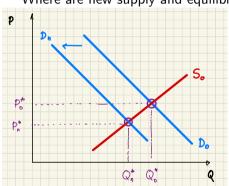

- Why might this happen?
- We learn that peaches give acne

0: Two Curves Shift

0000

• Weather is particularly good for peaches this year

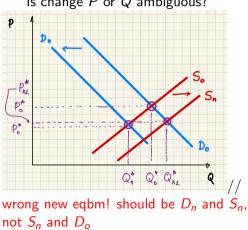
- Why might this happen?
- We learn that peaches give acne


0: Two Curves Shift

0000

• Weather is particularly good for peaches this year

4: Ec


Where are new supply and equilibrium?

- Why might this happen?
- We learn that peaches give acne

0: Two Curves Shift

0000

• Weather is particularly good for peaches this year

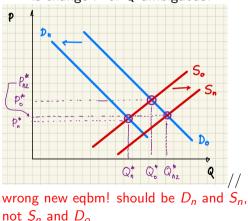
Is change P or Q ambiguous?

4: Ec

• Why might this happen?

0000

• We learn that peaches give acne


0: Two Curves Shift

• Weather is particularly good for peaches this year

In sum

- equilibrium price surely declines
- equilibrium quantity change unclear

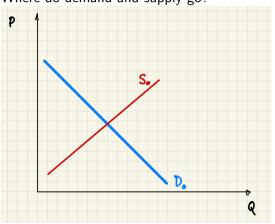
Is change P or Q ambiguous?

4: *Es* 0000 Recap 000

5: Other Elasticities

4: *Es* 00000

Demand Shifts Outward, Supply Shifts Outward


- Why might this happen?
- We learn that peaches are extra healthy
- Producers shift from canned to fresh

- Why might this happen?
- We learn that peaches are extra healthy

0: Two Curves Shift

000

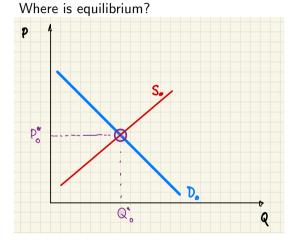
• Producers shift from canned to fresh

5: Other Elasticities

Where do demand and supply go?

2: *E_D* and Businesses

0: Two Curves Shift

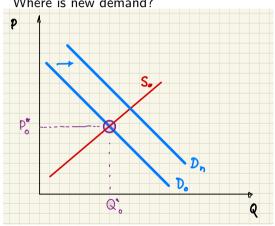

1: *ED* 0000000000000 2: *E_D* and Businesses

5: Other Elasticities

4: *E*_S Re

Demand Shifts Outward, Supply Shifts Outward

- Why might this happen?
- We learn that peaches are extra healthy
- Producers shift from canned to fresh



- Why might this happen?
- We learn that peaches are extra healthy

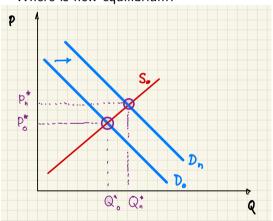
0: Two Curves Shift

000

 Producers shift from canned to fresh

5: Other Elasticities

Where is new demand?


2: *E_D* and Businesses

• Why might this happen?

0: Two Curves Shift

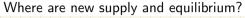
000

- We learn that peaches are extra healthy
- Producers shift from canned to fresh

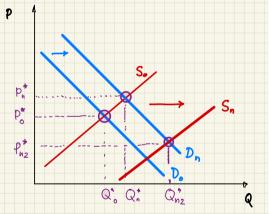
5: Other Elasticities

Where is new equilibrium?

2: *E_D* and Businesses


2: E_D and Businesses

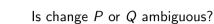
• Why might this happen?


0: Two Curves Shift

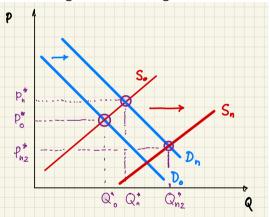
000

- We learn that peaches are extra healthy
- Producers shift from canned to fresh

5: Other Elasticities



• Why might this happen?


0: Two Curves Shift

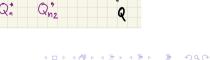
000

- We learn that peaches are extra healthy
- Producers shift from canned to fresh

2: *E_D* and Businesses

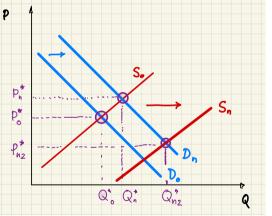
5: Other Elasticities

• Why might this happen?


0000

0: Two Curves Shift

- We learn that peaches are extra healthy
- Producers shift from canned to fresh


In sum

- equilibrium quantity increases
- equilibrium price change unclear

4: Ec

Is change *P* or *Q* ambiguous?

Admin

0: Two Curves Shift

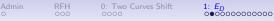
2: *E_D* and Businesses


5: Other Elasticities

4: *Es* 00000

Recap 000

Ch. 5: 1. Price Elasticity of Demand


◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

5: Other Elasticities

4: *Es* 00000

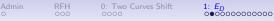
- "How far a number is from zero"
- We write |a| the vertical bars are the absolute value sign



2: E_D and Businesses

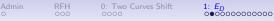
5: Other Elasticities

4: *Es* 00000


- "How far a number is from zero"
- We write |a| the vertical bars are the absolute value sign
- |-2| =

5: Other Elasticities

4: *E*_S 00000


- "How far a number is from zero"
- We write |a| the vertical bars are the absolute value sign
- |-2|=2

5: Other Elasticities

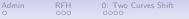
4: *Es* 00000

- "How far a number is from zero"
- We write |a| the vertical bars are the absolute value sign
- |-2|=2
- |2| =

5: Other Elasticities

4: *Es* 00000

- "How far a number is from zero"
- We write |a| the vertical bars are the absolute value sign
- |-2|=2
- |2| = 2


- Elasticity measures the change in quantity for a given change in price
- Absolutely crucial for policy decisions
- Formally, percentage change in one value relative to percentage change in another

- Elasticity measures the change in quantity for a given change in price
- Absolutely crucial for policy decisions
- Formally, percentage change in one value relative to percentage change in another
- In math, elasticity is

$$E = \frac{\% \Delta Q}{\% \Delta P}$$

• Δ is capital Greek letter delta, denoting change

2: E_D and Businesses

5: Other Elasticities

4: *Es* 00000

Price Elasticity of Demand

• How responsive are consumers to a change in price?

$$E_D = rac{\% \Delta Q_D}{\% \Delta P}$$

• Is *E_D* > 0? or ≤ 0?

1: *E_D*

2: *E_D* and Businesses

5: Other Elasticities

4: Es

<□> <問> <問> < 目> < 目> < 目> = - のへで

Recap 000

Price Elasticity of Demand

• How responsive are consumers to a change in price?

$$E_D = \frac{\% \Delta Q_D}{\% \Delta P}$$

• Is $E_D > 0$? or ≤ 0 ? $E_D \le 0$

2: E_D and Businesses

5: Other Elasticities

4: *Es* 00000

Working Through an Elasticity Calculation

If the price of peaches increases by 5%, how much does total peach consumption change?

$$E_D = -0.82$$
$$E_D = \frac{\% \Delta Q}{\% \Delta P}$$

・ロト ・日・・日・・日・・ のくの

1: *E_D* ○○○○●○○○○○○○○○ 2: E_D and Businesses

5: Other Elasticities

4: *Es* 00000

Working Through an Elasticity Calculation

If the price of peaches increases by 5%, how much does total peach consumption change?

$$E_D = -0.82$$
$$E_D = \frac{\% \Delta Q}{\% \Delta P}$$
$$-0.82 = \frac{\% \Delta Q}{5}$$

1: *E_D*

2: E_D and Businesses

5: Other Elasticities

4: *Es* 00000

Working Through an Elasticity Calculation

If the price of peaches increases by 5%, how much does total peach consumption change?

$$E_D = -0.82$$
$$E_D = \frac{\% \Delta Q}{\% \Delta P}$$
$$-0.82 = \frac{\% \Delta Q}{5}$$

Therefore

$$\Delta Q = -0.82 * 5 = -4.1$$

2: E_D and Businesses

5: Other Elasticities

4: *E*₅ R 00000 c

Working Through an Elasticity Calculation

If the price of peaches increases by 5%, how much does total peach consumption change?

$$E_D = -0.82$$
$$E_D = \frac{\% \Delta Q}{\% \Delta P}$$
$$-0.82 = \frac{\% \Delta Q}{5}$$

Therefore

 $\Delta Q = -0.82 * 5 = -4.1$

If the quantity of peaches consumed increases by 5%, how much did peach prices change?

$$E_D = -0.82$$
$$E_D = \frac{\%\Delta Q}{\%\Delta P}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

2: *E_D* and Businesse 0000 5: Other Elasticities

4: *Es* 00000

Working Through an Elasticity Calculation

If the price of peaches increases by 5%, how much does total peach consumption change?

$$E_D = -0.82$$
$$E_D = \frac{\% \Delta Q}{\% \Delta P}$$
$$-0.82 = \frac{\% \Delta Q}{5}$$

If the quantity of peaches consumed increases by 5%, how much did peach prices change?

$$E_D = -0.82$$
$$E_D = \frac{\%\Delta Q}{\%\Delta P}$$
$$+ 0.82 = \frac{5}{\%\Delta P}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Therefore

 $\Delta Q = -0.82 * 5 = -4.1$

2: E_D and Businesses

5: Other Elasticities

4: *Es* 00000

Working Through an Elasticity Calculation

If the price of peaches increases by 5%, how much does total peach consumption change?

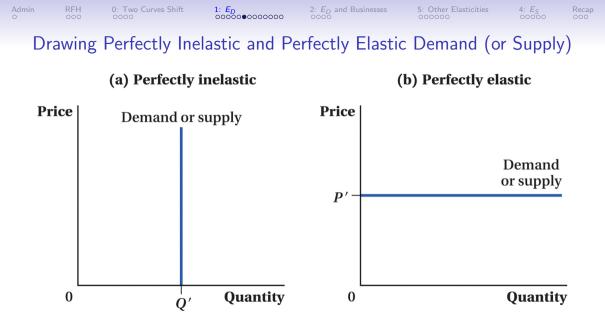
$$E_D = -0.82$$
$$E_D = \frac{\% \Delta Q}{\% \Delta P}$$
$$-0.82 = \frac{\% \Delta Q}{5}$$

Therefore

$$\Delta Q = -0.82 * 5 = -4.1$$

If the quantity of peaches consumed increases by 5%, how much did peach prices change?

$$E_D = -0.82$$
$$E_D = \frac{\% \Delta Q}{\% \Delta P}$$
$$-0.82 = \frac{5}{\% \Delta P}$$


Therefore

$$\%\Delta P = \frac{5}{-0.82} = -6$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Drawing Perfectly Inelastic and Perfectly Elastic Demand (or Supply)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Return to Middle School Math: Which Slope is Bigger?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Slope *m* is

$$m \equiv rac{\mathsf{rise}}{\mathsf{run}}$$

r

• Or, slope *m* is

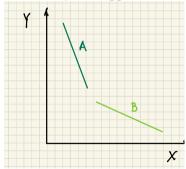
$$m \equiv \frac{\Delta y}{\Delta x}$$

- Remember that that the slope of a demand curve is negative
- Bigger slope is the one closer to zero

Return to Middle School Math: Which Slope is Bigger?

• Slope *m* is

$$m \equiv \frac{rise}{run}$$


1

• Or, slope *m* is

$$m \equiv \frac{\Delta y}{\Delta x}$$

- Remember that that the slope of a demand curve is negative
- Bigger slope is the one closer to zero

Which slope is bigger?

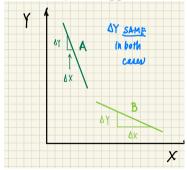
◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - の々で

4: Ec

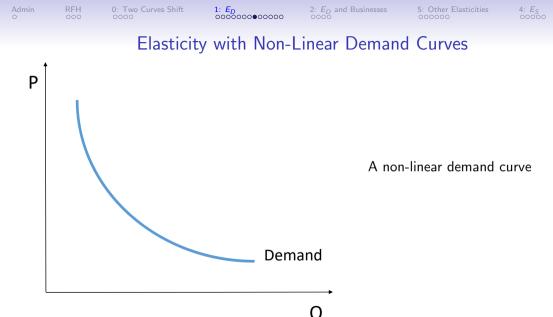
Return to Middle School Math: Which Slope is Bigger?

• Slope *m* is

$$n \equiv \frac{rise}{run}$$


r

• Or, slope *m* is


$$m \equiv \frac{\Delta y}{\Delta x}$$

- Remember that that the slope of a demand curve is negative
- Bigger slope is the one closer to zero

Which slope is bigger?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

▲□▶ ▲□▶ ▲ □▶ ▲ □ ● ● ● ●

Ρ

1: *ED*

2: E_D and Businesses

5: Other Elasticities

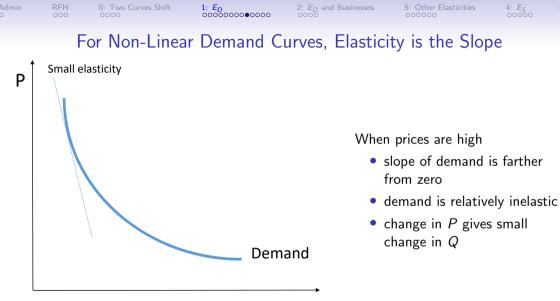
4: Es

Elasticity with Non-Linear Demand Curves

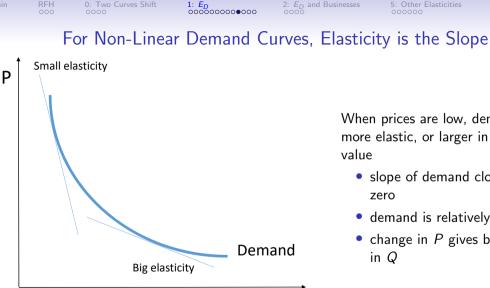
A non-linear demand curve Elasticity is the slope of the curve

Demand

Ρ


5: Other Elasticities

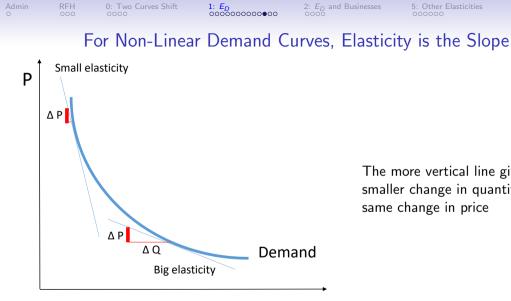
4: Ec


Elasticity with Non-Linear Demand Curves

Demand

A non-linear demand curve Elasticity is the slope of the curve Where on the curve is demand most inelastic?

Q



When prices are low, demand is more elastic, or larger in absolute

4: Ec

- slope of demand closer to
- demand is relatively elastic
- change in *P* gives big change in Q

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The more vertical line gives a smaller change in quantity for the same change in price

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

4: Ec

For Linear Demand Curves, Elasticity is Not Exactly the Slope

• But we won't pay too much attention to this oddity

1: *ED*

2: *E_D* and Businesses

5: Other Elasticities

4: E_S

Determinants of the Price Elasticity of Demand

Substitution, substitution, substitution

2: *E_D* and Businesse

5: Other Elasticities

4: *Es* 00000

Determinants of the Price Elasticity of Demand

Substitution, substitution, substitution

1. More elastic E_D with more competing products

1: *E_D* 0000000000000 2: *E_D* and Businesse

5: Other Elasticities

4: *Es* 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Determinants of the Price Elasticity of Demand

Substitution, substitution, substitution

- 1. More elastic E_D with more competing products
- 2. Specific brands more elastic E_D than categories of goods

5: Other Elasticities

4: *Es* 00000

Determinants of the Price Elasticity of Demand

Substitution, substitution, substitution

- 1. More elastic E_D with more competing products
- 2. Specific brands more elastic E_D than categories of goods
- 3. Necessities less elastic E_D

2: *E_D* and Businesse

5: Other Elasticiti

4: *Es* 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Determinants of the Price Elasticity of Demand

Substitution, substitution, substitution

- 1. More elastic E_D with more competing products
- 2. Specific brands more elastic E_D than categories of goods
- 3. Necessities less elastic E_D

4. Consumer search makes E_D more elastic

2: *E_D* and Businesse

5: Other Elasticitie

4: *Es* 00000

Determinants of the Price Elasticity of Demand

Substitution, substitution, substitution

- 1. More elastic E_D with more competing products
- 2. Specific brands more elastic E_D than categories of goods
- 3. Necessities less elastic E_D

- 4. Consumer search makes E_D more elastic
- 5. More time $\rightarrow E_D$ more elastic

・ロト・日本・日本・ 日本・ シュー

1: *E_D* 000000000000000 2: *E_D* and Businesse

 Other Elasticitie 000000 4: *Es* 00000

Determinants of the Price Elasticity of Demand

Substitution, substitution, substitution

- 1. More elastic E_D with more competing products
- 2. Specific brands more elastic E_D than categories of goods
- 3. Necessities less elastic E_D

- 4. Consumer search makes E_D more elastic
- 5. More time $\rightarrow E_D$ more elastic

Elasticity differs by person, product and price

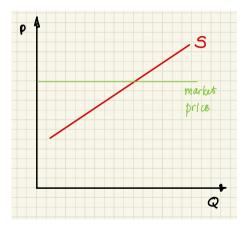
Admin

0: Two Curves Sh 0000

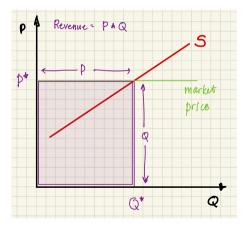
2: *E_D* and Businesses ●○○○ 5: Other Elasticities

4: *Es* 00000

Recap 000


Ch. 5: 2. How Businesses (and Government) Use Demand Elasticity

revenue \equiv price * quantity

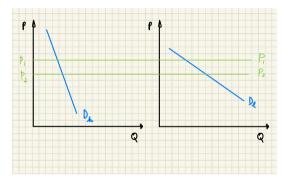


revenue \equiv price * quantity

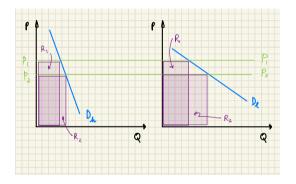
(日本) (日本) (日本) (日本) (日本)

revenue \equiv price * quantity

(日本) (日本) (日本) (日本) (日本)


- The lower the elasticity
- the more firms can increase prices
- without losing customers

- The lower the elasticity
- the more firms can increase prices
- without losing customers
- \rightarrow smaller revenue change



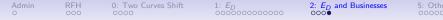
- The lower the elasticity
- the more firms can increase prices
- without losing customers
- ullet \rightarrow smaller revenue change

- The lower the elasticity
- the more firms can increase prices
- without losing customers
- ullet \rightarrow smaller revenue change

What Does This Mean for Firms and Governments?

For businesses

• If your customers are inelastic, consider raising prices



What Does This Mean for Firms and Governments?

4: Ec

For businesses

- If your customers are inelastic, consider raising prices
- If your customers are elastic, consider lowering prices

5: Other Elasticities

Rec 0 00

4: Ec

What Does This Mean for Firms and Governments?

For businesses

- If your customers are inelastic, consider raising prices
- If your customers are elastic, consider lowering prices
- What market should a firm be more interested in entering: an inelastic or elastic market?

5: Other Elasticities

4: E_S Rec 00000 00

What Does This Mean for Firms and Governments?

For businesses

- If your customers are inelastic, consider raising prices
- If your customers are elastic, consider lowering prices
- What market should a firm be more interested in entering: an inelastic or elastic market? inelastic one

For governments

• Suppose the government adds to supply. Will this cost the government more money in an inelastic or elastic market?

・ロト・日本・日本・ 日本・ シック・

Admin

0: Two Curves Shift

2: E_D and Businesses

5: Other Elasticities

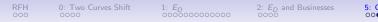
4: *Es* 00000

Recap 000

Ch. 5: 3. Other Demand Elasticities

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Two Additional Elasticities Firms (and Governments) Should Keep in Mind


1. Cross-price elasticity of demand

2. Income elasticity of demand

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々ぐ

1. Cross-Price Elasticity of Demand

How much does your demand for pluots (X) change when the price of apricots (Y) increases?

5: Other Elasticities

Reca

4: Ec

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1. Cross-Price Elasticity of Demand

How much does your demand for pluots (X) change when the price of apricots (Y) increases?

$$\Xi^D_{XY} = rac{\%\Delta Q^D_X}{\%\Delta P_Y}$$

- The responsiveness of quantity demanded of good X to price of good Y
- If E_{XY}^D is positive, are X and Y substitutes or complements?

5: Other Elasticities

1. Cross-Price Elasticity of Demand

How much does your demand for pluots (X) change when the price of apricots (Y)increases?

$$\Xi^D_{XY} = rac{\%\Delta Q^D_X}{\%\Delta P_Y}$$

- The responsiveness of quantity demanded of good X to price of good Y
- If E_{YY}^D is positive, are X and Y substitutes or complements?
- If E_{YY}^D is negative, are X and Y substitutes or complements?

1. Cross-Price Elasticity of Demand

How much does your demand for pluots (X) change when the price of apricots (Y) increases?

$$\Xi^D_{XY} = rac{\%\Delta Q^D_X}{\%\Delta P_Y}$$

- The responsiveness of quantity demanded of good X to price of good Y
- If E_{XY}^D is positive, are X and Y substitutes or complements?
- If E_{XY}^D is negative, are X and Y substitutes or complements?
- What if your demand for X and Y is entirely unrelated?

4: *Es*

• Why does the envelope lobbyist hang out with the adhesive lobbyist?

- Why does the envelope lobbyist hang out with the adhesive lobbyist?
- Why might electricians support EV subsidies?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Why does the envelope lobbyist hang out with the adhesive lobbyist?
- Why might electricians support EV subsidies?
- Why do economists generally advocate for broad-based taxes?

4: Ec

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Why does the envelope lobbyist hang out with the adhesive lobbyist?
- Why might electricians support EV subsidies?
- Why do economists generally advocate for broad-based taxes?
- Other policy examples?

2. Income Elasticity of Demand

4: Es

• We are interested in the income elasticity of demand

$$E_I^D = \frac{\% \Delta Q^D}{\% \Delta I}$$

• What do you consume more of as your income increases?

2. Income Elasticity of Demand

4: Ec

• We are interested in the income elasticity of demand

$$E_I^D = \frac{\% \Delta Q^D}{\% \Delta I}$$

- What do you consume more of as your income increases? These are normal goods, and E > 0 (but E ≤ 1)
- What do you consume less of as your income increases?

2. Income Elasticity of Demand

4: Ec

· We are interested in the income elasticity of demand

$$E_I^D = \frac{\% \Delta Q^D}{\% \Delta I}$$

- What do you consume more of as your income increases? These are normal goods, and E > 0 (but $E \le 1$)
- What do you consume less of as your income increases? These are inferior goods, and E < 0.

: *E_D* and Businesse

5: Other Elasticities

4: *Es* 00000

Income Elasticity of Demand for Fresh Peaches

	Number	Average consumption	Median	Consumption per
Income range	families	per family	income	\$100 income
Dollars	number	pounds	dollars	pounds
Less than 1,376	34	20	920	2.2
1,376-2,300	40	26	1,990	1.3
2,301-2,476	46	22	2,400	0.9
2,476-2,975	42	24	2,740	0.9
2,976-3,275	<u>ц</u> а	26	3,000	0.9
3,276-3,600	50	32	3,500	0.9
3,601-4,575	40	27	3,980	0.7
4,576-6,075	54	38	5,000	.0.8
6,076-9,975	49	38	7,500	0.5
9,976 and over	49	40	12,000	0.3

Table 10. Quantity of peaches eaten fresh per \$100 of income huh families, Salt Lake City, Utah, 1947

- From a 1947 thesis about the peach market
- How can we characterize income elasticity of demand for peaches?

: *E_D* and Businesse

5: Other Elasticities

4: *Es* 00000

Income Elasticity of Demand for Fresh Peaches

	Number	Average consumption	Median	Consumption per
Income range	families	per family	income	\$100 income
Dollars	number	pounds	dollars	pounds
Less than 1,376	34	20	920	2.2
1,376-2,300	40	26	1,990	1.3
2,301-2,476	46	22	2,400	0.9
2,476-2,975	41	24	2,740	0.9
2,976-3,275	<u>ц</u> а	26	3,000	0.9
3,276-3,600	50	32	3,500	0.9
3,601-4,575	40	27	3,980	0.7
4,576-6,075	54	38	5,000	0.8
6,076-9,975	49	38	7,500	0.5
9,976 and over	49	40	12,000	0.3

Table 10. Quantity of peaches eaten fresh per \$100 of income hhh families, Salt Lake City, Utah, 1947

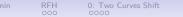
- From a 1947 thesis about the peach market
- How can we characterize income elasticity of demand for peaches?
- Compare change in peach consumption to change in income

Admin

0: Two Curves Shift

1: *E_D*

2: *E_D* and Businesses


5: Other Elasticities

4: *Es* ●0000

Recap 000

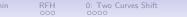
Ch. 5: 4. Price Elasticity of Supply

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

1: *E_D* 00000000000000000000 2: *E_D* and Businesses

5: Other Elasticities

4: *Es* ⊙●○○○○


Recap 000

Price Elasticity of Supply

• How responsive are producers to a change in price?

$$E_S = rac{\% \Delta Q_S}{\% \Delta P}$$

• Is *E_S* > 0? or < 0?

l: *E_D* 20000000000000 2: *E_D* and Businesses

5: Other Elasticities

4: *Es* ⊙●○○○○

Recap 000

Price Elasticity of Supply

• How responsive are producers to a change in price?

$$E_S = rac{\% \Delta Q_S}{\% \Delta P}$$

• Is $E_S > 0$? or < 0? $E_S > 0$

D 00000000000 E_D and Businesses

5: Other Elasticities

4: *Es* ○●○○○

Price Elasticity of Supply

• How responsive are producers to a change in price?

$$E_S = \frac{\% \Delta Q_S}{\% \Delta P}$$

- Is $E_S > 0$? or < 0? $E_S > 0$
- If producer can easily decrease production, what does this mean for $|E_S|$?

1: *E_D* 00000000000000 ED and Businesses

5: Other Elasticitie

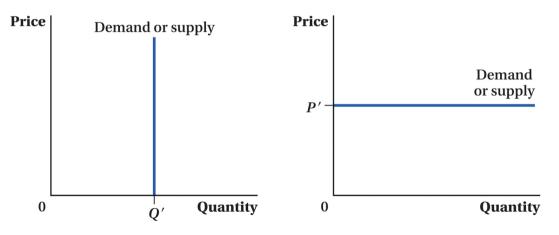
4: E_S Re 0●000 00

Price Elasticity of Supply

• How responsive are producers to a change in price?

$$E_S = \frac{\% \Delta Q_S}{\% \Delta P}$$

- Is $E_S > 0$? or < 0? $E_S > 0$
- If producer can easily decrease production, what does this mean for $|E_S|$?
- The more easily the producer can change production, the larger $|E_S|$



Drawing Perfectly Inelastic and Perfectly Elastic Demand (or Supply)

Drawing Perfectly Inelastic and Perfectly Elastic Demand (or Supply)

(a) Perfectly inelastic (b) Perfectly elastic

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

0: Two Curves Shift 0000

l: *E_D* 00000000000000000000 2: *E_D* and Businesses

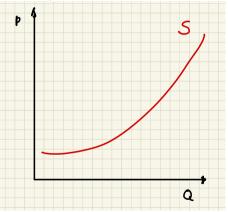
5: Other Elasticities

000

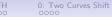
Elasticity with Non-Linear Supply Curves

Consider a non-linear supply curve

2: *E_D* and Businesses


5: Other Elasticities

Reca 000

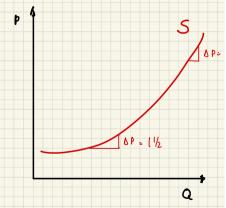

Elasticity with Non-Linear Supply Curves

Which part is less elastic?

Consider a non-linear supply curve

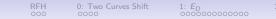
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ → ≣ → のへぐ

1: *E_D* 000000000000000 2: *E_D* and Businesses


5: Other Elasticities

4: *Es* 000●0

Recap 000


Elasticity with Non-Linear Supply Curves

Which part is more elastic?

Consider a non-linear supply curve

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

2: E_D and Businesses

5: Other Elasticities

Determinants of the Price Elasticity of Supply

Substitution and flexibility: Can it make more or less? Make something else? Use different inputs to make the same thing?

5: Other Elasticitie

Determinants of the Price Elasticity of Supply

Substitution and flexibility: Can it make more or less? Make something else? Use different inputs to make the same thing?

- 1. Inventories make supply more elastic
- 2. Easily available variable inputs make supply more elastic
- 3. Extra capacity makes supply more elastic

- 4. Easy entry and exit make supply more elastic
- 5. A longer time period makes supply more elastic

Admin

RFH 000 0: Two Curves Shift 0000

1: *E_D* 0000000000 2: *E_D* and Businesses

5: Other Elasticities

4: *Es* 00000 Recap ●00

Recap

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

E_D and Businesses

5: Other Elasticities

4: *Es* 00000

Recap 0●0

What We Did

- Defined price elasticity of supply and considered determinants
- Discussed role of E_D for firms and governments
- Defined
 - income elasticity of demand
 - cross-price elasticity of demand
- Defined price elasticity of supply and considered determinants and government implications

: *E_D* and Businesses

5: Other Elasticities

4: *Es* 00000

Recap

For Next Class

- Do problem set 5
- Work with classmates, me or TA on problems
- Check Ripped from Headlines assignments
- Article finders email me by Wednesday midnight
- Read Chapter 6
- Don't come to class next week!

4: Ec Recap

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

000

For Next Class

- Do problem set 5
- Work with classmates, me or TA on problems
- Check Ripped from Headlines assignments
- Article finders email me by Wednesday midnight
- Read Chapter 6
- Don't come to class next week!

I will

- post these lecture notes on my webpage
- post link to lecture recording on Blackboard
- anything else?