Event Study

Validity

Opioids

# Lecture 4: Difference in Difference, 2 of 2

February 5, 2025

<□▶ <圕▶ < 클▶ < 클▶ · 클 · 의 Q (~ 1/47

Validity

Opioids

#### **Course Administration**

- 1. Graded summaries through mid-day today
- 2. No lab after class this week
- 3. PS 2 due next week

- 4. Any problem set 2 issues?
- 5. If you haven't identified a replication paper, I'm nervous
- 6. Any other issues?



Special request: Interpreting logs

S

Event Study

Validit

Opioids

Today

Special request: Interpreting logs Relaxing diff-in-diff: event study

- $1. \ \ \text{Simplest possible event study}$
- 2. Diff-in-diff event study
- 3. Estimating trends
- 4. Testing for trends
- 5. Important things we don't cover

ĮS

Event Study

Validit

Opioids

Today

Special request: Interpreting logs Relaxing diff-in-diff: event study

- $1. \ \ \text{Simplest possible event study}$
- 2. Diff-in-diff event study
- 3. Estimating trends
- 4. Testing for trends
- 5. Important things we don't cover

Janssen and Zhang

- 1. Diff-in-diff specification
- 2. Event study specification

Event Study

Validity

Opioids

# 0. Interpreting Logs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Validity

Opioids

## What is the log Function?

• function that squishes x

<ロト <回ト < Eト < Eト E のQで 5/47

Validity

Opioids

#### What is the log Function?

- function that squishes x
- log law:

$$\log(a) - \log(b) = \log(\frac{a}{b})$$

- ullet  $\to$  log differences are ratios
- We can interpret 1.05 as a  $\sim$  5% difference

Validity

Opioids

# What is the log Function?

- function that squishes x
- log law:

$$\log(a) - \log(b) = \log(\frac{a}{b})$$

- $\bullet \ \rightarrow \ {\rm log} \ {\rm differences} \ {\rm are} \ {\rm ratios}$
- We can interpret 1.05 as a  $\sim$  5% difference



Validity

Opioids

#### What is the log Function?

- function that squishes x
- log law:

$$\log(a) - \log(b) = \log(\frac{a}{b})$$

- $\bullet \ \rightarrow \ {\rm log} \ {\rm differences} \ {\rm are} \ {\rm ratios}$
- We can interpret 1.05 as a  $\sim$  5% difference



How to Interpret a Coefficient When the Dependent Variable is Logged?

Suppose we estimate

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad (1)$$

Logs

How do we interpret  $\beta_1$ ?

How to Interpret a Coefficient When the Dependent Variable is Logged?

Suppose we estimate

 $Y = \beta_0 + \beta_1 X + \epsilon \qquad (1)$ 

Logs

How do we interpret  $\beta_1$ ?

And if we estimate

 $\log(Y) = \alpha_0 + \alpha_1 X + \epsilon \qquad (2)$ 

How do we interpret  $\alpha_1$ ?

How to Interpret a Coefficient When the Dependent Variable is Logged?

Suppose we estimate

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad (1$$

Logs

How do we interpret  $\beta_1$ ?

• In Eq. 2: 1 unit change in  $X \to \alpha$  change in  $\log(Y)$ 

And if we estimate

 $\log(Y) = \alpha_0 + \alpha_1 X + \epsilon \qquad (2)$ 

How do we interpret  $\alpha_1$ ?

How to Interpret a Coefficient When the Dependent Variable is Logged?

Suppose we estimate

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad (1$$

Logs

How do we interpret  $\beta_1$ ?

And if we estimate

$$\log(Y) = \alpha_0 + \alpha_1 X + \epsilon \qquad (2)$$

How do we interpret  $\alpha_1$ ?

- In Eq. 2: 1 unit change in  $X \to \alpha$  change in  $\log(Y)$
- ullet ightarrow  $e^lpha$  unit change in  $e^{\log(Y)}=Y$
- When lpha is small,  $e^{lpha} \sim 1 + lpha$

# How to Interpret a Coefficient When the Dependent Variable is Logged?

Suppose we estimate

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad (1)$$

Logs

How do we interpret  $\beta_1$ ?

And if we estimate

$$\log(Y) = \alpha_0 + \alpha_1 X + \epsilon \qquad (2$$

How do we interpret  $\alpha_1$ ?

- In Eq. 2: 1 unit change in  $X \to \alpha$  change in  $\log(Y)$
- $ightarrow e^{lpha}$  unit change in  $e^{\log(Y)} = Y$
- When lpha is small,  $e^{lpha} \sim 1 + lpha$
- $\rightarrow$  interpret  $\alpha$  as percent change in log(Y) for 1-unit change in X

#### When $\alpha$ is close to $1+\alpha$



(ロ) (四) (主) (主) (主) (つ) (の)

Event Study

Validity

Opioids

# 1. Simplest Event Study



gs

Event Study

Validit

Opioids

#### Basic Set-Up

- We want to know the impact of X on Y
- Over time, the treatment X changes increases, decreases, appears, disappears
- Compare outcomes Y before and after change in X
- Examples, please!

Validity

Opioids

#### Last Week: Only Before and After



#### More Dots: Observe Each i in each time t



Event Study

#### More Dots: Observe Each i in each time t



- All *i* are treated
- At all times  $t > T_0$

Equation to estimate average Y after?

Event Study

Vá

#### More Dots: Observe Each i in each time t



- All *i* are treated
- At all times  $t > T_0$

Equation to estimate average Y after?

 $Y_{i,t} = \beta_0 + \beta_1 after_t + \epsilon_{i,t}$ 

where after<sub>t</sub> is 1 for years  $t > T_0$ .

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日><日</td>11/47

Event Study

Valid

#### More Dots: Observe Each i in each time t



- All *i* are treated
- At all times  $t > T_0$

Equation to estimate average Y after?

 $Y_{i,t} = \beta_0 + \beta_1 after_t + \epsilon_{i,t}$ 

where after t is 1 for years  $t > T_0$ .

What does  $\beta_1$  report?

ogs

Event Study

Validit

Opioids

### What $\beta_1$ Reports



- All *i* are treated
- At all times  $t > T_0$

$$Y_{i,t} = \beta_0 + \beta_1 after_t + \epsilon_{i,t}$$

where after<sub>t</sub> is 1 for years  $t > T_0$ 

<□><□><□><□><□><□><□><□><□><□><□><0< 12/47

Event Study

Validity

Opioids

#### Estimating the Impact of Time Granularly



How do we estimate the impact of treatment in each period individually?

Event Study

Validity

Opioids

#### Estimating the Impact of Time Granularly



How do we estimate the impact of treatment in each period individually?

$$Y_{i,t} = \beta_0 + \beta_{1,t} 1\{\mathsf{time} = t\}_t + \epsilon_{i,t}$$

Validity

Opioids

# Raw Data: Event Study Diagram



Event Study

Validit

Opioids

#### Raw Data: Event Study Diagram



$$Y_{i,t} = \beta_0 + \beta_{1,t} 1\{ \mathsf{time} = t \}_t + \epsilon_{i,t}$$

- Regression coefficients should measure these means in the raw data
- What do you think a plot of β<sub>1,t</sub> should look like?

## Regression Coefficients: Event Study Diagram



Opioids

#### Regression Coefficients: Event Study Diagram



• Everything is relative to mean in year 1



Opioids

#### Regression Coefficients: Event Study Diagram



- Everything is relative to mean in year 1
- Why might comparing pre- and post blue dots not give the causal impact of X on Y?

Opioids

#### Regression Coefficients: Event Study Diagram



- Everything is relative to mean in year 1
- Why might comparing pre- and post blue dots not give the causal impact of X on Y?
- Given what we learned last class, how can we fix?

15 / 47

Event Study

Validity

Opioids

# 2. Diff-in-diff Event Study

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Opioids

Basic Set-Up

- We want to know the impact of X on Y
- Over time, the treatment X changes increases, decreases, appears, disappears
- Some units experience a change in X are treated and others are not
- Compare outcomes Y before and after change in X
- Examples, please!

Opioids

### Review: How We Do This with Just Before and After



#### Review: How We Do This with Just Before and After



Equation to estimate impact of treatment?

- For treated i assign treated<sub>i</sub> = 1
- Treatment at all times  $t > T_0$

Equation to estimate diff-in-diff?


Equation to estimate impact of treatment?

- For treated *i* assign treated<sub>*i*</sub> = 1
- Treatment at all times  $t > T_0$

Equation to estimate diff-in-diff?

 $\begin{array}{rcl} Y_{i,t} &=& \beta_0 + \beta_1 \mathrm{treated}_i * \mathrm{after}_t \\ &+& \beta_2 \mathrm{treated}_i + \beta_3 \mathrm{after}_t + \epsilon_{i,t} \end{array}$ 

<ロト < 回 ト < 目 ト < 目 ト ミ の Q () 18/47

## Treated and Untreated in an Event Study Framework



- For treated *i* assign treated<sub>*i*</sub> = 1
- Treatment at all times  $t > T_0$

If we estimate treatment impact via diff-in-diff equation

$$Y_{i,t} = \beta_0 + \beta_1 \text{treated}_i * \text{after}_t + \beta_2 \text{treated}_i + \beta_3 \text{after}_t + \epsilon_{i,t}$$

what does it compare?

## Treated and Untreated in an Event Study Framework



- For treated *i* assign treated<sub>*i*</sub> = 1
- Treatment at all times  $t > T_0$

If we estimate treatment impact via diff-in-diff equation

$$Y_{i,t} = \beta_0 + \beta_1 \text{treated}_i * \text{after}_t + \beta_2 \text{treated}_i + \beta_3 \text{after}_t + \epsilon_{i,t}$$

what does it compare? Comparison is **still** all before vs all after, but relative to untreated

Event Study

Validit

Opioids

## Estimating the Impact of Time Granularly: Event Study



Can we estimate the impact of each period individually?

Opioids

## Estimating the Impact of Time Granularly: Event Study



Can we estimate the impact of each period individually?

$$\begin{aligned} \chi_{i,t} &= \beta_0 + \beta_{1,t} \text{treated}_i * 1\{\text{time} = t\}_t \\ &+ \beta_2 \text{treated}_i + \beta_{3,t} 1\{\text{time} = t\}_t + \epsilon_{i,t} \end{aligned}$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (や 20 / 47 Event Study

Validity

Opioids

#### Estimating the Impact of Time Granularly: Event Study



Can we estimate the impact of each period individually?

$$\begin{aligned} Y_{i,t} &= \beta_0 + \beta_{1,t} \text{treated}_i * 1\{\text{time} = t\}_t \\ &+ \beta_2 \text{treated}_i + \beta_{3,t} 1\{\text{time} = t\}_t + \epsilon_{i,t} \end{aligned}$$

What do you expect  $\beta_{1,t}$  to be given this figure?

Opioids

## Estimating the Impact of Time Granularly: Regression Coefficients



Plot  $\beta_{1,t}$  :

$$\begin{array}{rcl} Y_{i,t} &=& \beta_0 + \beta_{1,t} \texttt{treated}_i * 1\{\texttt{time} = t\}_t \\ &+& \beta_2 \texttt{treated}_i + \beta_{3,t} 1\{\texttt{time} = t\}_t + \epsilon_{i,t} \end{array}$$

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () 21/47

Opioids

## Estimating the Impact of Time Granularly: Regression Coefficients



Plot  $\beta_{1,t}$  :

$$\begin{array}{rcl} Y_{i,t} &=& \beta_0 + \beta_{1,t} \texttt{treated}_i * 1\{\texttt{time} = t\}_t \\ &+& \beta_2 \texttt{treated}_i + \beta_{3,t} 1\{\texttt{time} = t\}_t + \epsilon_{i,t} \end{array}$$

But ...

- you may care about the change in trends
- you may want to estimate the effect net of trends

Event Study

Validity

Opioids

## 3. Estimating Trends

<ロト < 団 > < 臣 > < 臣 > 王 のQ() 22 / 47

Logs

Event Study

Validit

Opioids

## On Trends



How do we calculate a linear trend for these data?

Logs

Event Study

Validit

Opioids

## On Trends



How do we calculate a linear trend for these data?

inflation<sub>t</sub> = 
$$\alpha_0 + \alpha_1$$
year<sub>t</sub> +  $\epsilon_t$ 

Logs

Event Study

Validit

Opioids

## On Trends



How do we calculate a linear trend for these data?

inflation<sub>t</sub> =  $\alpha_0 + \alpha_1$ year<sub>t</sub> +  $\epsilon_t$ 

 $\begin{aligned} \text{Graph } \alpha_0 + \alpha_1 * \text{year}_t \text{ where year}_t \text{ is } \\ \{1, 2, 3, \ldots\} \end{aligned}$ 

<ロト < 回 ト < 目 ト < 目 ト ミ の Q (\* 23 / 47

Validity

Opioids

#### Just To Be Clear on Data

| year | inflation | year2 |
|------|-----------|-------|
| 1980 | 0.12      | 1     |
| 1981 | 0.10      | 2     |
| 1982 | 0.07      | 3     |
| 1983 | 0.03      | 4     |

 $\begin{aligned} \text{inflation}_t &= \alpha_0 + \alpha_1 \text{year}_t + \epsilon_t \\ & \text{and} \\ & \text{inflation}_t &= \gamma_0 + \gamma_1 \text{year}2_t + \epsilon_t \end{aligned}$ 

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (や 24 / 47

Validity

Opioids

#### Just To Be Clear on Data

| year | inflation | year2 |
|------|-----------|-------|
| 1980 | 0.12      | 1     |
| 1981 | 0.10      | 2     |
| 1982 | 0.07      | 3     |
| 1983 | 0.03      | 4     |

 $\begin{aligned} \text{inflation}_t &= \alpha_0 + \alpha_1 \text{year}_t + \epsilon_t \\ & \text{and} \\ & \text{inflation}_t &= \gamma_0 + \gamma_1 \text{year} 2_t + \epsilon_t \\ & \text{yield } \alpha_1 &= \gamma_1 \text{ , but not } \alpha_0 &= \gamma_0 \end{aligned}$ 

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (や 24 / 47

ogs

Event Study

Validity

Opioids

## Adding Trends

What's odd about this line?



ogs

Event Study

Validity

Opioids

## Adding Trends



#### What's odd about this line?

Make two lines

< □ > < 団 > < 団 > < 臣 > < 臣 > 三 の Q (~ 25 / 47 ogs

Event Study

Validit

Opioids

## Adding Trends



What's odd about this line?

Make two lines

inflation<sub>t</sub> =  $\delta_0 + \delta_1 A_t + \delta_2 \text{year}_t + \delta_3 A_t * \text{year}_t + \epsilon_t$ 

where  $A_t$  is 1 if year<sub>t</sub> >  $T_0$  and 0 otherwise.

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () 25 / 47 ogs

Validity

Opioids

## Adding Trends



What's odd about this line?

Make two lines

inflation<sub>t</sub> =  $\delta_0 + \delta_1 A_t + \delta_2 \text{year}_t + \delta_3 A_t * \text{year}_t + \epsilon_t$ 

where  $A_t$  is 1 if year<sub>t</sub> >  $T_0$  and 0 otherwise.

What might you want  $T_0$  to be?

<ロト < 回 ト < 目 ト < 目 ト ミ の Q (\* 25 / 47

Opioids

## Separate Trends



◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

Validity

Opioids

#### Adding Linear Trends

What is a linear trend?

- a variable that increases linearly for each unit of time – here a year
- the calendar year is a trend variable
- this is different than a fixed effect

ogs

Event Study

Validity

Opioids

#### Adding Linear Trends

What is a linear trend?

- a variable that increases linearly for each unit of time – here a year
- the calendar year is a trend variable
- this is different than a fixed effect

| ID | year | t1 | t2 |
|----|------|----|----|
| A  | 1990 | 1  | 5  |
| А  | 1991 | 2  | 10 |
| А  | 1992 | 3  | 15 |
| В  | 2000 | 11 | 55 |
| В  | 2001 | 12 | 60 |
| В  | 2002 | 13 | 65 |

<ロト</li>
<ロト</li>
<日ト</li>
<日ト</li>
<日ト</li>
<日ト</li>
<日ト</li>
<日ト</li>
<日ト</li>
<100</li>

Event Study

Validity

Opioids

# 4. Validity Tests

・ロト・日本・日本・日本・今日・

28 / 47



Opioids

## Validity Tests

- Parallel trends in the absence of treatment is unobservable
- But you can assess parallel trends pre-treatment
- This is precisely estimable

Opioids

#### Adding a Pre-Treatment Trend

Suppose you start with

 $Y_{i,t} = \beta_0 + \beta_1 \text{treated}_i * \text{after}_t + \beta_2 \text{treated}_i + \beta_3 \text{after}_t + \epsilon_{i,t}$ 

and you want to test for pre-treatment trends. What do you do?

<ロト < 部ト < 言ト < 言ト こ の < で 30 / 47

Opioids

#### Adding a Pre-Treatment Trend

Suppose you start with

 $Y_{i,t} = \beta_0 + \beta_1 \text{treated}_i * \text{after}_t + \beta_2 \text{treated}_i + \beta_3 \text{after}_t + \epsilon_{i,t}$ 

and you want to test for pre-treatment trends. What do you do?

- Use only data from before treatment
- Estimate

 $Y_{i,t} = \alpha_0 + \alpha_1 \text{year}_t + \alpha_2 \text{treated}_i + \alpha_3 \text{treated}_i * \text{year}_t + \epsilon_{i,t}$ 

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の へ () 30 / 47

Opioids

#### Adding a Pre-Treatment Trend

Suppose you start with

 $Y_{i,t} = \beta_0 + \beta_1 \text{treated}_i * \text{after}_t + \beta_2 \text{treated}_i + \beta_3 \text{after}_t + \epsilon_{i,t}$ 

and you want to test for pre-treatment trends. What do you do?

- Use only data from before treatment
- Estimate

 $Y_{i,t} = \alpha_0 + \alpha_1 \text{year}_t + \alpha_2 \text{treated}_i + \alpha_3 \text{treated}_i * \text{year}_t + \epsilon_{i,t}$ 

• What do we expect if there is no pre-treatment trend?

Opioids

#### Adding a Pre-Treatment Trend

Suppose you start with

 $Y_{i,t} = \beta_0 + \beta_1 \text{treated}_i * \text{after}_t + \beta_2 \text{treated}_i + \beta_3 \text{after}_t + \epsilon_{i,t}$ 

and you want to test for pre-treatment trends. What do you do?

- Use only data from before treatment
- Estimate

 $Y_{i,t} = \alpha_0 + \alpha_1 \text{year}_t + \alpha_2 \text{treated}_i + \alpha_3 \text{treated}_i * \text{year}_t + \epsilon_{i,t}$ 

• What do we expect if there is no pre-treatment trend?  $\alpha_3 = 0$ 

Validity

Opioids

#### Additional Validity Tests

- Add unit-specific time trends. If these kill the effect, what does this tell us?
  - for example, you have state by year data
  - looking for the impact of a policy that hits some states and not others

Validity

Opioids

#### Additional Validity Tests

• Add unit-specific time trends. If these kill the effect, what does this tell us?

- for example, you have state by year data
- looking for the impact of a policy that hits some states and not others
- Triple difference not always possible

Event Study

Validity

Opioids

# 5. Important Things We Don't Cover

・ロ・・酉・・ヨ・・ヨ・ ヨー うへで

## Time Is Limited, So We Skip Important Things

A non-exhaustive list includes

- 1. How serial correlation can inflate estimates. See Bertrand, et al., 2004
- 2. Heterogeneous treatment effects + differential treatment timing can bias estimates
  - large current literature
  - packages that can deal with these problems
  - think carefully about whether your comparison group is treated or not

Event Study

Validity

Opioids

## **Opioids and Event Studies**

< □ > < 団 > < 団 > < 亘 > < 亘 > < 亘 > < 亘 > < Ξ > 34 / 47

Opioids

#### Order of Events

- 1. Paper background
- 2. Diff-in-diff strategies
  - 2.1 independent vs chain, geographic fixed effects
  - 2.2 exploit independents that change to chain
  - 2.3 independent vs chain, before and after reformulation



gs

Event Study

Validity

Opioids

## Paper Basics

• What are the two key pharmacy types?

・ロト・西ト・モート ヨー うへの



Opioids

## Paper Basics

- What are the two key pharmacy types?
- What is the causal research question?

< □ > < 部 > < 言 > < 言 > こ き < ○ へ () 36 / 47

Opioids

## Paper Basics

- What are the two key pharmacy types?
- What is the causal research question?
- What are the potential challenges to identification? or, why don't we just compare outcomes at independents and chains?
Event Study

Validit

Opioids

イロト イヨト イヨト イヨト

э

36 / 47

## Paper Basics

- What are the two key pharmacy types?
- What is the causal research question?
- What are the potential challenges to identification? or, why don't we just compare outcomes at independents and chains?

### Data

5

Event Study

Validit

Opioids

## Paper Basics

- What are the two key pharmacy types?
- What is the causal research question?
- What are the potential challenges to identification? or, why don't we just compare outcomes at independents and chains?

#### Data

- morphine equivalent doses (MEDs)
- by pharmacy
- by month

5

Event Study

Validit

Opioids

## Paper Basics

- What are the two key pharmacy types?
- What is the causal research question?
- What are the potential challenges to identification? or, why don't we just compare outcomes at independents and chains?

#### Data

- morphine equivalent doses (MEDs)
- by pharmacy
- by month
- What is the unit of observation?
- And the unit of analysis?

## E1: Independents vs Everyone Else

$$Y_{it} = \beta \mathsf{Indep}_i + \mu_t + \gamma_{FE} + \epsilon_{it}$$

- Y<sub>i,t</sub> MED at pharmacy i at time t
- Indep<sub>i</sub>: 1 if independent
- $\mu_t$ : year-month FE
- $\gamma_{\it FE}$ : place FE

## E1: Independents vs Everyone Else

$$Y_{it} = \beta \mathsf{Indep}_i + \mu_t + \gamma_{FE} + \epsilon_{it}$$

- $Y_{i,t}$  MED at pharmacy *i* at time *t*
- Indep<sub>i</sub>: 1 if independent
- $\mu_t$ : year-month FE
- $\gamma_{\it FE}$ : place FE

What sign do we expect for  $\beta$ ?

## E1: Independents vs Everyone Else

$$Y_{it} = \beta \mathsf{Indep}_i + \mu_t + \gamma_{FE} + \epsilon_{it}$$

- $Y_{i,t}$  MED at pharmacy *i* at time *t*
- Indep<sub>i</sub>: 1 if independent
- $\mu_t$ : year-month FE
- $\gamma_{\it FE}$ : place FE

What sign do we expect for  $\beta$ ?

Validity

Opioids

## E1: Independents vs Everyone Else

$$Y_{it} = \beta \mathsf{Indep}_i + \mu_t + \gamma_{FE} + \epsilon_{it}$$

- $Y_{i,t}$  MED at pharmacy *i* at time *t*
- Indep<sub>i</sub>: 1 if independent
- $\mu_t$ : year-month FE
- $\gamma_{FE}$ : place FE

What sign do we expect for  $\beta$ ?

|                          | (1)                | (2)                | (3)                | (4)                |
|--------------------------|--------------------|--------------------|--------------------|--------------------|
| Independent              | 50.131<br>(4.908)  | 51.362<br>(4.912)  | 107.826<br>(5.551) | 128.016<br>(5.875) |
| Constant                 | 306.488<br>(2.109) |                    |                    |                    |
| Year-month fixed effects | No                 | Yes                | Yes                | Yes                |
| County fixed effects     | No                 | No                 | Yes                | No                 |
| Zip code fixed effects   | No                 | No                 | No                 | Yes                |
| Mean outcome             | 327.19             | 327.19             | 327.19             | 327.19             |
| Mean effect in percent   | 15.32              | 15.7               | 32.96              | 39.13              |
| Observations $R^2$       | 5,055,761<br>0.002 | 5,055,761<br>0.010 | 5,055,761<br>0.089 | 5,055,761<br>0.225 |

Opioids

## Putting Independent Finding in Context

|                                     | All      | Chain              | Independent |
|-------------------------------------|----------|--------------------|-------------|
| Panel D. Opioid dispensing          | 227.10   | 206.40             | 256.62      |
| Monthly MED dispensing, all opioids | (541.11) | 306.49<br>(342.89) | (735.15)    |

E2: Change in Ownership, Raw Data



39 / 47

≣⇒

## E2: Change in Ownership, Regression Form

### Estimate either

$$Y_{i,t} = \beta_0 D_{it}^{\mathsf{PRE}} + \beta_1 D_{it}^{\mathsf{POST}} + \beta_C \mathsf{CHAIN}_i + \mu_t + \epsilon_{i,t}$$

or

$$Y_{i,t} = \beta_1 D_{it}^{\mathsf{POST}} + \alpha_i + \mu_t + \epsilon_{i,t}$$

- $D_{it}^{\text{PRE}}$ : 1 for indep's that change to chain, before change
- $D_{it}^{\text{POST}}$ : 1 for indep's that change to chain, after change
- CHAIN<sub>i</sub>: 1 for always chains
- *α<sub>i</sub>*: pharmacy FE

# E2: Change in Ownership, Regression Form

### Estimate either

$$Y_{i,t} = \beta_0 D_{it}^{\mathsf{PRE}} + \beta_1 D_{it}^{\mathsf{POST}} + \beta_C \mathsf{CHAIN}_i + \mu_t + \epsilon_{i,t}$$

or

$$Y_{i,t} = \beta_1 D_{it}^{\mathsf{POST}} + \alpha_i + \mu_t + \epsilon_{i,t}$$

- $D_{it}^{\text{PRE}}$ : 1 for indep's that change to chain, before change
- $D_{it}^{\text{POST}}$ : 1 for indep's that change to chain, after change
- CHAIN<sub>i</sub>: 1 for always chains
- *α<sub>i</sub>*: pharmacy FE

• how do we interpret  $\beta_0$ ?

## E2: Change in Ownership, Regression Form

### Estimate either

$$Y_{i,t} = \beta_0 D_{it}^{\mathsf{PRE}} + \beta_1 D_{it}^{\mathsf{POST}} + \beta_C \mathsf{CHAIN}_i + \mu_t + \epsilon_{i,t}$$

or

$$Y_{i,t} = \beta_1 D_{it}^{\mathsf{POST}} + \alpha_i + \mu_t + \epsilon_{i,t}$$

- $D_{it}^{\text{PRE}}$ : 1 for indep's that change to chain, before change
- $D_{it}^{\text{POST}}$ : 1 for indep's that change to chain, after change
- CHAIN<sub>i</sub>: 1 for always chains
- *α<sub>i</sub>*: pharmacy FE

- how do we interpret  $\beta_0$ ?
- and  $\beta_1$ ?

## E2: Change in Ownership, Regression Form

### Estimate either

$$Y_{i,t} = \beta_0 D_{it}^{\mathsf{PRE}} + \beta_1 D_{it}^{\mathsf{POST}} + \beta_C \mathsf{CHAIN}_i + \mu_t + \epsilon_{i,t}$$

or

$$Y_{i,t} = \beta_1 D_{it}^{\mathsf{POST}} + \alpha_i + \mu_t + \epsilon_{i,t}$$

- $D_{it}^{\text{PRE}}$ : 1 for indep's that change to chain, before change
- $D_{it}^{\text{POST}}$ : 1 for indep's that change to chain, after change
- CHAIN<sub>i</sub>: 1 for always chains
- *α<sub>i</sub>*: pharmacy FE

- how do we interpret  $\beta_0$ ?
- and  $\beta_1$ ?
- why no  $D_{it}^{\text{PRE}}$  in second equation?

## E2: Change in Ownership, Results

|                          |                      | All                  |                       |                      |  |  |
|--------------------------|----------------------|----------------------|-----------------------|----------------------|--|--|
|                          | OLS<br>(1)           | OLS<br>(2)           | OLS<br>(3)            | OLS<br>(4)           |  |  |
| $D^{PRE}$                | 1.516<br>(33.915)    | 32.777<br>(33.655)   | -1.226<br>(32.747)    |                      |  |  |
| D <sup>POST</sup>        | $-102.89 \ (19.755)$ | $-130.867 \ (19.61)$ | $-153.215 \ (20.439)$ | $-110.507 \ (16.65)$ |  |  |
| CHAIN                    | -49.933<br>(4.931)   | -50.89<br>(4.934)    | $-127.879 \ (5.912)$  |                      |  |  |
| Constant                 | 356.624<br>(4.883)   |                      |                       |                      |  |  |
| Year-month fixed effects | No                   | Yes                  | Yes                   | Yes                  |  |  |
| Zip code fixed effects   | No                   | No                   | Yes                   | No                   |  |  |
| Facility fixed effects   | No                   | No                   | No                    | Yes                  |  |  |
| Mean outcome             | 327.19               | 327.19               | 327.19                | 327.19               |  |  |
| Mean effect in percent   | -31.45               | -40                  | -46.83                | -33.77               |  |  |
| Observations             | 5,055,761            | 5,055,761            | 5,055,761             | 5,055,761            |  |  |
| $R^2$                    | 0.002                | 0.01                 | 0.225                 | 0.809                |  |  |

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへぐ

# E2: Change in Ownership, Event Study Estimates

#### From Online Appendix, Figure E.1



(a) Dispensing of all opioids in MED, facility and year-month fixed effects



(b) Dispensing of all opioids in MED, facility and ZIP code  $\times$  year-month fixed effects

Validity

Opioids

## E3: Reformulation



Figure 2

Validity

Opioids

## E3: Reformulation



Figure 2

- why should reformulation matter?
- what should we be comparing in this figure to see the double diff?
- what should we be comparing to look for validity?

Validity

Opioids

## E3: Specification

What regression should we use to test impact of reformulation at independent pharmacies vs chains?

Event Study

Validit

Opioids

## E3: Specification

What regression should we use to test impact of reformulation at independent pharmacies vs chains?

$$Y_{it} = \beta \mathsf{Indep}_i * \mathsf{Post}_t + lpha_i + \mu_t + \epsilon_{it}$$

Event Study

Validit

Opioids

## E3: Specification

What regression should we use to test impact of reformulation at independent pharmacies vs chains?

$$Y_{it} = \beta \mathsf{Indep}_i * \mathsf{Post}_t + \alpha_i + \mu_t + \epsilon_{it}$$

- Why no chain indicator?
- How do we interpret  $\beta$ ?

## E3: Reformulation, Results

|                           | Full sample: 2006–2012 |                   |                     |                   |
|---------------------------|------------------------|-------------------|---------------------|-------------------|
|                           | (1)                    | (2)               | (3)                 | (4)               |
| Independent $\times$ Post | -6.097<br>(0.529)      | -6.436<br>(0.529) | -6.996<br>(0.565)   | -5.339<br>(0.484) |
| Independent               | $10.569 \\ (0.681)$    | 10.912<br>(0.683) | $18.886 \\ (0.832)$ |                   |
| Post                      | $6.095 \\ (0.154)$     |                   |                     |                   |
| Constant                  | $21.495 \\ (0.281)$    |                   |                     |                   |
| Year-month fixed effects  | No                     | Yes               | Yes                 | Yes               |
| Zip code fixed effects    | No                     | No                | Yes                 | No                |
| Pharmacy fixed effects    | No                     | No                | No                  | Yes               |
| Mean outcome              | 27.14                  | 27.14             | 27.14               | 27.14             |
| Mean effect in percent    | -22.47                 | -23.72            | -25.78              | -19.67            |
| Observations              | 5,055,761              | 5,055,761         | 5,055,761           | 5,054,885         |
| $R^2$                     | 0.004                  | 0.019             | 0.159               | 0.650             |

★ E ► ★ E ► E .

## E3: Reformulation Event Study Results

#### Online Appendix Figure E.5



(a) Dispensing of OxyContin in MED, pharmacy and year-month fixed effects



(b) Dispensing of OxyContin in MED, pharmacy and ZIP code  $\times$  year-month fixed effects

Opioids

## Next Lecture

#### Read

- Mastering Metrics Chapter 3
- an oldie but goodie: Angrist and Kreuger, 1991
- skim 2c
- Turn in PS 2
- Summary due next week if you're on the list

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 47 / 47