election

OVB

Indicators

Black et al

Lecture 2: Fixed Effects

January 22, 2025

OVB

Indicators

Black et al

Course Administration

- 1. Any problems with summary assignments?
 - I aspire to grade these weekly
- 2. Any problems accessing recorded lecture?
- 3. Proposal due next week

election

OVB

ndicators

Black et al

Course Administration

- 1. Any problems with summary assignments?
 - I aspire to grade these weekly
- 2. Any problems accessing recorded lecture?
- 3. Proposal due next week
- 4. Lab session at 8:10 tonight

- 6. Problem set 1 due next week
 - submit to ps 1 folder on Piazza as a private message

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- we'll write back with feedback
- 7. Anything else?

- 1. General problem of selection
- 2. Omitted variable bias in terms of regression coefficients
- 3. Indicator variables
- 4. Discussion of Black et al

Selection

OVB

Indicators

Black et al

1. General Problem of Selection Bias

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

in

Selection

OVB

Indicators

Black et al

The General Problem

If we assume a homogeneous treatment effect, κ , then

$$Avg_n[Y_{1i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] =$$

Selection

OVB

Indicators

Black et al

The General Problem

If we assume a homogeneous treatment effect, κ , then

$$Avg_n[Y_{1i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] =$$
$$Avg_n[\kappa + Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] =$$

Selection

OVB

Indicators

Black et al

The General Problem

If we assume a homogeneous treatment effect, κ , then

$$Avg_n[Y_{1i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] = Avg_n[\kappa + Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] = \kappa + Avg_n[Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0]$$

Selection

OVB

Indicators

Black et al

The General Problem

If we assume a homogeneous treatment effect, κ , then

$$Avg_n[Y_{1i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] = Avg_n[\kappa + Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] = \kappa + Avg_n[Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0]$$

Red term is difference in outcome Y for treated relative to untreated in the absence of treatment: **selection bias**.

Black et al

Let's Think of Some Examples of Selection Bias

$$Avg_n[Y_{0i}|D_i=1] - Avg_n[Y_{0i}|D_i=0]$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Let's Think of Some Examples of Selection Bias

$$\operatorname{Avg}_{n}[Y_{0i}|D_{i}=1] - \operatorname{Avg}_{n}[Y_{0i}|D_{i}=0]$$

A fix: control for covariates X_i to make selection bias disappear.

 $Avg_n[Y_{0i}|D_i=1] - Avg_n[Y_{0i}|D_i=0]$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

A fix: control for covariates X_i to make selection bias disappear.

Strong evidence that "controlling for observables" rarely gets rid of selection.

election

OVB

Indicators

Black et al

2. Omitted Variable Bias Formula

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Black et al

Long (True) vs. Short (False) Regression

Suppose that the "true" (long) regression is

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon'$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

Long (True) vs. Short (False) Regression

Suppose that the "true" (long) regression is

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon'$$

Unfortunately, you don't observe X_2 – examples?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Long (True) vs. Short (False) Regression

Suppose that the "true" (long) regression is

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon'$$

Unfortunately, you don't observe X_2 – examples? So instead you estimate the "false" (short) regression

 $Y = \alpha + \beta^s X_1 + \epsilon^s$

Should you trust β^{s} ?

nin

election

OVB

Indicators

Black et al

Evaluating Whether to Trust β^s

Recall

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon'$$
(1)
$$Y = \alpha + \beta^s X_1 + \epsilon^s$$
(2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

S

on

OVB

Indicators

Black et al

Evaluating Whether to Trust β^s

Recall

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon' \tag{1}$$

$$Y = \alpha + \beta^s X_1 + \epsilon^s \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_2 = \pi_0 + \pi_1 X_1 + \epsilon^c$$

1

1

OVB

Indicators

Black et al

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

Evaluating Whether to Trust β^s

Recall

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon' \tag{1}$$

$$Y = \alpha + \beta^s X_1 + \epsilon^s \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_2 = \pi_0 + \pi_1 X_1 + \epsilon^c$$

Then (proof in book)

OVB =

on

OVB

Indicators

Black et al

Evaluating Whether to Trust β^s

Recall

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon' \tag{1}$$

$$Y = \alpha + \beta^s X_1 + \epsilon^s \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_2 = \pi_0 + \pi_1 X_1 + \epsilon^c$$

Then (proof in book)

$$\mathsf{OVB} = \beta^s - \beta^I$$

tion

OVB

Indicators

Black et al

Evaluating Whether to Trust β^s

Recall

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon' \tag{1}$$

$$Y = \alpha + \beta^s X_1 + \epsilon^s \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_2 = \pi_0 + \pi_1 X_1 + \epsilon^c$$

Then (proof in book)

$$\mathsf{OVB} = \beta^s - \beta' = \pi_1 \gamma$$

tion

OVB

Indicators

Black et al

Evaluating Whether to Trust β^s

Recall

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon' \tag{1}$$

$$Y = \alpha + \beta^s X_1 + \epsilon^s \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_2 = \pi_0 + \pi_1 X_1 + \epsilon^c$$

Then (proof in book)

$$\mathsf{OVB} = \beta^s - \beta^\prime = \pi_1 \gamma$$

OVB is one type of selection bias.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

Let's think about this equation

 $\pi_1 \equiv$ relationship between X_2 and X_1 $\gamma \equiv$ relationship between X_2 and Y in long regression

$$\mathsf{OVB} = \beta^s - \beta' = \pi_1 \gamma$$

• What if the treatment and the omitted variable are not correlated?

Black et al

Let's think about this equation

 $\pi_1 \equiv$ relationship between X_2 and X_1 $\gamma \equiv$ relationship between X_2 and Y in long regression

$$\mathsf{OVB} = \beta^s - \beta' = \pi_1 \gamma$$

- What if the treatment and the omitted variable are not correlated?
- What if the omitted variable is not correlated with the outcome Y?

・ロト・西ト・ヨト・ヨー うへぐ

Black et al

Let's think about this equation

 $\pi_1 \equiv$ relationship between X_2 and X_1

 $\gamma \equiv$ relationship between \textit{X}_2 and Y in long regression

$$\mathsf{OVB} = \beta^s - \beta^\prime = \pi_1 \gamma$$

- What if the treatment and the omitted variable are not correlated?
- What if the omitted variable is not correlated with the outcome Y?
- Any story about omitted variable bias needs to include both parts

Let's think about this equation

 $\pi_1 \equiv$ relationship between X_2 and X_1

 $\gamma \equiv$ relationship between \textit{X}_2 and Y in long regression

$$\mathsf{OVB} = \beta^s - \beta^\prime = \pi_1 \gamma$$

- What if the treatment and the omitted variable are not correlated?
- What if the omitted variable is not correlated with the outcome Y?
- Any story about omitted variable bias needs to include both parts
- Resolving the problem of omitted variable bias in order to generate causal estimates is the key concern of this course

Selection

OVB

Indicators

Black et al

3. Indicator Variables

(ロ) (型) (E) (E) (E) (O)

Selection

OVB

Indicators

Black et al

What is an indicator variable?

All these things are the same

- dummy variable
- indicator variable
- fixed effect
- $1\{\text{condition}\}$

Selection

OVB

Indicators

Black et al

What is an indicator variable?

All these things are the same

- dummy variable
- indicator variable
- fixed effect
- 1{condition}

All are coded 1 if true and 0 otherwise

Admin Selection OVB Indicators

Interpreting Indicator Variables

wage =
$$\beta_0 + \beta_1$$
female + β_2 education + ϵ

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

- female $\in \{0,1\}$
- how do we interpret β_1 ?

Admin Selection OVB Indicators

Black et al

Interpreting Indicator Variables

wage =
$$\beta_0 + \beta_1$$
female + β_2 education + ϵ

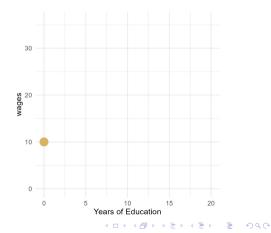
- female $\in \{0,1\}$
- how do we interpret β_1 ?
- let's draw in a figure

Black et al

Interpreting Coefficients

 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \epsilon$

- x axis is education
- y axis is wage
- where is β_0 ?

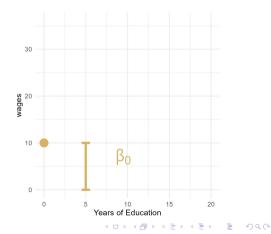


Black et al

Interpreting Coefficients

 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \epsilon$

- x axis is education
- y axis is wage
- where is β_0 ?

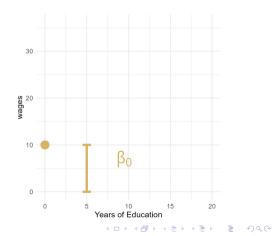


Black et al

Interpreting Coefficients

 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \epsilon$

- x axis is education
- y axis is wage
- where is β_0 ?

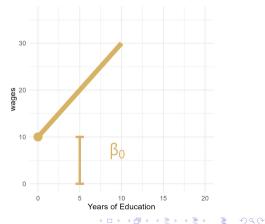


Black et al

Interpreting Coefficients

 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \epsilon$

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?



Indicators

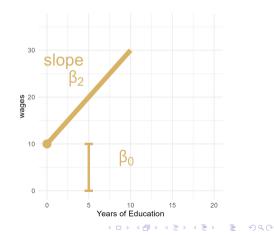
Interpreting Coefficients

wage = $\beta_0 + \beta_1$ female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?

election

OVB


Indicators

Black et al

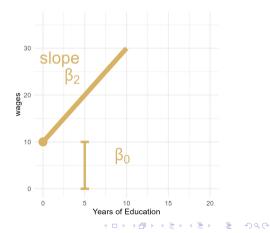
Interpreting Coefficients

 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \epsilon$

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?

election

OVB

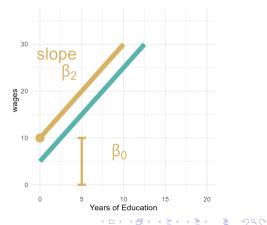

Indicators

Black et al

Interpreting Coefficients

 $\mathsf{wage} = \beta_{\mathsf{0}} + \beta_{\mathsf{1}}\mathsf{female} + \beta_{\mathsf{2}}\mathsf{education} + \epsilon$

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?
- how do we draw wages for women as a function of education?

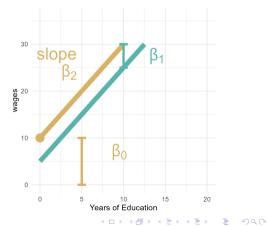


Indicators

Interpreting Coefficients

wage = $\beta_0 + \beta_1$ female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?
- how do we draw wages for women as a function of education? $\beta_2 * education + \beta_1$



Indicators

Interpreting Coefficients

wage = $\beta_0 + \beta_1$ female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?
- how do we draw wages for women as a function of education? $\beta_2 * education + \beta_1$

ction

OVB

Indicators

Black et al

Coding Variables

• Suppose we want to look at the effect of gender on wages:

wage = $\beta_0 + \beta_1$ female + β_2 education + ϵ

- Data are coded 1 for men, 2 for women
- Why don't we just use this coding? Why do we make a dummy variable?

tion

OVB

Indicators

Black et al

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Coding Variables

• Suppose we want to look at the effect of gender on wages:

wage = $\beta_0 + \beta_1$ female + β_2 education + ϵ

- Data are coded 1 for men, 2 for women
- Why don't we just use this coding? Why do we make a dummy variable?
- Why do we not make one dummy variable for each gender?

tion

OVB

Indicators

Black et al

Coding Variables

• Suppose we want to look at the effect of gender on wages:

wage = $\beta_0 + \beta_1$ female + β_2 education + ϵ

- Data are coded 1 for men, 2 for women
- Why don't we just use this coding? Why do we make a dummy variable?
- Why do we not make one dummy variable for each gender?
- How can you modify the specification to allow education to have differential impacts by gender?

ion

OVB

Indicators

Black et al

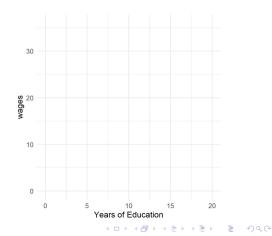
Coding Variables

• Suppose we want to look at the effect of gender on wages:

wage = $\beta_0 + \beta_1$ female + β_2 education + ϵ

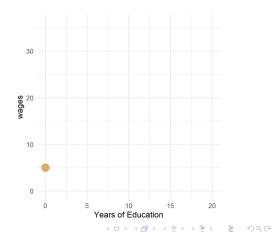
- Data are coded 1 for men, 2 for women
- Why don't we just use this coding? Why do we make a dummy variable?
- Why do we not make one dummy variable for each gender?
- How can you modify the specification to allow education to have differential impacts by gender?

wage = $\beta_0 + \beta_1$ female + β_2 education + β_3 female * education + ϵ

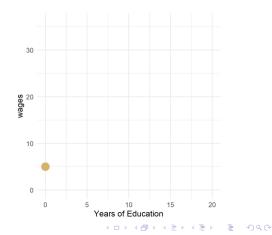

Interpreting Indicator Variables in Interaction

wage = $\beta_0 + \beta_1$ female + β_2 education + β_3 female * education + ϵ

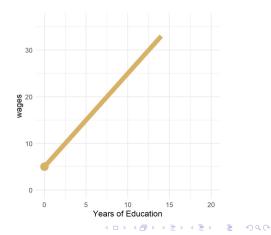
- female $\in \{0, 1\}$
- what is this specification doing differently?


 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \beta_3 \mathsf{female} * \mathsf{education} + \epsilon$

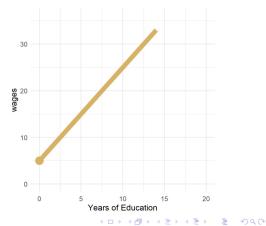
what are men's wages with no education?


 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \beta_3 \mathsf{female} * \mathsf{education} + \epsilon$

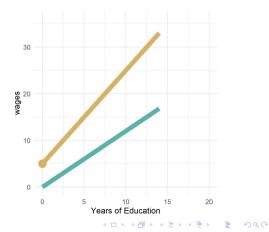
• what are men's wages with no education? β_0


 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \beta_3 \mathsf{female} * \mathsf{education} + \epsilon$

- what are men's wages with no education? β_0
- how do men's wages change with education?


 $\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \beta_3 \mathsf{female} * \mathsf{education} + \epsilon$

- what are men's wages with no education? β_0
- how do men's wages change with education? β_2 * education


wage = $\beta_0 + \beta_1$ female + β_2 education + β_3 female * education + ϵ

- what are men's wages with no education? β_0
- how do men's wages change with education? $\beta_2 * education$
- how do women's wages change with education?

wage = $\beta_0 + \beta_1$ female + β_2 education + β_3 female * education + ϵ

- what are men's wages with no education? β_0
- how do men's wages change with education? $\beta_2 *$ education
- how do women's wages change with education? start at $\beta_0 + \beta_1$ change by $\beta_2 * education + \beta_3 * education$

wage = $\beta_0 + \beta_1$ female + β_2 education + β_3 female * education + ϵ

• How to test whether education has a differential effect on women's wages relative to men's?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

• How to test whether education has a differential effect on women's wages relative to men's?

• Test $\beta_3 = 0$

Selection

OVB

Indicators

Black et al

4. Black et al on family size

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

election

OVB

Indicators

Black et al

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Paper Overview

What is this paper about?

• what is the theory that they rebut in this paper?

Selection

OVB

Indicators

Black et al

Paper Overview

- what is the theory that they rebut in this paper? theory about quality vs. quantity in kids
- to whom is it due?

election

OVB

ndicators

Black et al

Paper Overview

- what is the theory that they rebut in this paper? theory about quality vs. quantity in kids
- to whom is it due? Nobel laureate Becker and some buddies

election

OVB

Indicators

Black et al

Paper Overview

What are the data?

- what is the theory that they rebut in this paper? theory about quality vs. quantity in kids
- to whom is it due? Nobel laureate Becker and some buddies

lection

DVB

ndicators

Black et al

Paper Overview

What are the data?

- people aged 16-74 from 1986-2000 (would you be in this sample?)
- parents and kids must both appear in the dataset
- can match parents to kids
- about each person they know year of birth, completed education, earnings
- about each family, they know family size

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- what is the theory that they rebut in this paper? theory about quality vs. quantity in kids
- to whom is it due? Nobel laureate Becker and some buddies

lection

DVB

ndicators

Black et al

Paper Overview

What are the data?

- people aged 16-74 from 1986-2000 (would you be in this sample?)
- parents and kids must both appear in the dataset
- can match parents to kids
- about each person they know year of birth, completed education, earnings
- about each family, they know family size
- what is the unit of observation?

- what is the theory that they rebut in this paper? theory about quality vs. quantity in kids
- to whom is it due? Nobel laureate Becker and some buddies

OVB

What Can We Learn from Summary Statistics?

	Average education	Average mother's education	Average father's education	Fraction with <12 years	Fraction with 12 years	Fraction with >12 years
			Family siz	0		
1	12.0	9.2	10.1	.44	.25	.31
2	12.4	9.9	10.8	.34	.31	.35
3	12.3	9.7	10.6	.37	.30	.33
4	12.0	9.3	10.1	.43	.29	.28
5	11.7	8.8	9.5	.49	.27	.24
6	11.4	8.5	9.1	.54	.25	.20
7	11.2	8.3	8.9	.57	.24	.19
8	11.1	8.2	8.8	.58	.24	.18
9	11.0	8.0	8.6	.59	.25	.16
10+	11.0	7.9	8.8	.59	.26	.15
			Birth orde	r		
1	12.2	9.7	10.6	,38	.28	.34
2	12.2	9.6	10.5	.38	.30	.31
3	12.0	9.3	10.2	.40	.31	.29
4	11.9	9.0	9.7	.43	.32	.25
5	11.7	8.6	9.2	.46	.31	.22
6	11.6	8.3	8.9	.49	.31	.20
7	11.5	8.1	8.7	.51	.30	.19
8	11.6	8.0	8.6	.49	.31	.20
9	11.3	7.9	8.4	.53	.32	.15
10 +	11.3	7.8	8.7	.52	.32	.15
			All			
	12.2	9.5	10.4	.39	.29	.32

- We ignore instrumental variables and twins
- Focus only on the regular estimations
- But start with summary stats
- What does Table 3 tell us about education as family size increases?

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

What Can We Learn from Summary Statistics?

	Average education	Average mother's education	Average father's education	Fraction with <12 years	Fraction with 12 years	Fraction with >12 years
			Family siz	0		
1	12.0	9.2	10.1	.44	.25	.31
2	12.4	9.9	10.8	.34	.31	.35
3	12.3	9.7	10.6	.37	.30	.33
4	12.0	9.3	10.1	.43	.29	.28
5	11.7	8.8	9.5	.49	.27	.24
5	11.4	8.5	9.1	.54	.25	.20
7	11.2	8.3	8.9	.57	.24	.19
8	11.1	8.2	8.8	.58	.24	.18
9	11.0	8.0	8.6	.59	.25	.16
10 +	11.0	7.9	8.8	.59	.26	.15
			Birth orde	r		
1	12.2	9.7	10.6	.38	.28	.34
2	12.2	9.6	10.5	.38	.30	.31
3	12.0	9.3	10.2	.40	.31	.29
4	11.9	9.0	9.7	.43	.32	.25
5	11.7	8.6	9.2	.46	.31	.22
6	11.6	8.3	8.9	.49	.31	.20
7	11.5	8.1	8.7	.51	.30	.19
в	11.6	8.0	8.6	.49	.31	.20
9	11.3	7.9	8.4	.53	.32	.15
10 +	11.3	7.8	8.7	.52	.32	.15
			All			
	12.2	9.5	10.4	.39	.29	.32

- We ignore instrumental variables and twins
- Focus only on the regular estimations
- But start with summary stats
- What does Table 3 tell us about education as family size increases? increases (for 1 to 2), then declines
- What does Table 3 tell us about education as birth order increases?

What Can We Learn from Summary Statistics?

	Average education	Average mother's education	Average father's education	Fraction with <12 years	Fraction with 12 years	Fraction with >12 years
			Family siz	0		
1	12.0	9.2	10.1	.44	.25	.31
2	12.4	9.9	10.8	.34	.31	.35
3	12.3	9.7	10.6	.37	.30	.33
4	12.0	9.3	10.1	.43	.29	.28
5	11.7	8.8	9.5	.49	.27	.24
6	11.4	8.5	9.1	.54	.25	.20
7	11.2	8.3	8.9	.57	.24	.19
8	11.1	8.2	8.8	.58	.24	.18
9	11.0	8.0	8.6	.59	.25	.16
10 +	11.0	7.9	8.8	.59	.26	.15
			Birth orde	r		
1	12.2	9.7	10.6	.38	.28	.34
2	12.2	9.6	10.5	.38	.30	.31
3	12.0	9.3	10.2	.40	.31	.29
4	11.9	9.0	9.7	.43	.32	.25
5	11.7	8.6	9.2	.46	.31	.22
6	11.6	8.3	8.9	.49	.31	.20
7	11.5	8.1	8.7	.51	.30	.19
в	11.6	8.0	8.6	.49	.31	.20
9	11.3	7.9	8.4	.53	.32	.15
10 +	11.3	7.8	8.7	.52	.32	.15
			All			
	12.2	9.5	10.4	.39	.29	.32

- We ignore instrumental variables and twins
- Focus only on the regular estimations
- But start with summary stats
- What does Table 3 tell us about education as family size increases? increases (for 1 to 2), then declines
- What does Table 3 tell us about education as birth order increases? declines
- Give an example of an omitted variable when studying the impact of family size on wages

Black et al

- Get four families as an example to match paper
- What info do we need?

Black et al

- Get four families as an example to match paper
- What info do we need?
 - year of birth of each sibling
 - education of each family member

ı

- Get four families as an example to match paper
- What info do we need?
 - year of birth of each sibling
 - education of each family member
- Make this into a dataset you could do the sort of regressions that Black et al did.
- Make a copy of the google sheet I sent and enter data there
- Some hints
 - What's the unit of observation?

- Get four families as an example to match paper
- What info do we need?
 - year of birth of each sibling
 - education of each family member
- Make this into a dataset you could do the sort of regressions that Black et al did.
- Make a copy of the google sheet I sent and enter data there
- Some hints
 - What's the unit of observation? person
 - What variables do you need?

ı

- · Get four families as an example to match paper
- What info do we need?
 - year of birth of each sibling
 - education of each family member
- Make this into a dataset you could do the sort of regressions that Black et al did.
- Make a copy of the google sheet I sent and enter data there
- Some hints
 - What's the unit of observation? person
 - What variables do you need?
 - you need to be able to know who is in the same family
 - you need a variable for birth order
 - you need a variable for family size

Understanding Main Estimates: Table 4

What's the estimating equation for Table 4 column 1? (read p. 678, pp under 3.A.)

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Understanding Main Estimates: Table 4

What's the estimating equation for Table 4 column 1? (read p. 678, pp under 3.A.)

 $educ_{i,f} = \beta_0 + \beta_1 no.$ kids in fam_f + β_2 year of birth FE_i + $\epsilon_{i,f}$

Modifying Dataset to Estimate

Estimating Column 1

• To estimate column 1, what additional variable does your dataset need?

Modifying Dataset to Estimate

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need? birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182?

Black et al

Modifying Dataset to Estimate

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need? birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182? increasing family size by one more child decreases the average child's education by .18 of a year (20% of a year)

Estimating Column 2 – New regression equation?

Black et al

Modifying Dataset to Estimate

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need? birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182? increasing family size by one more child decreases the average child's education by .18 of a year (20% of a year)

Estimating Column 2 - New regression equation?

 $educ_{i,f} = \beta_0 + \beta_1 kids$ in fam $FE_f + \beta_2 year$ of birth $FE_i + \epsilon_{i,f}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Modifying Dataset to Estimate

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need? birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182? increasing family size by one more child decreases the average child's education by .18 of a year (20% of a year)

Estimating Column 2 - New regression equation?

$$educ_{i,f} = \beta_0 + \beta_1 kids$$
 in fam $FE_f + \beta_2 year$ of birth $FE_i + \epsilon_{i,f}$

• what does our dataset need to estimate it?

Black et al

Modifying Dataset to Estimate

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need? birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182? increasing family size by one more child decreases the average child's education by .18 of a year (20% of a year)

Estimating Column 2 - New regression equation?

$$educ_{i,f} = \beta_0 + \beta_1 kids$$
 in fam $FE_f + \beta_2 year$ of birth $FE_i + \epsilon_{i,f}$

- what does our dataset need to estimate it?
- how do we interpret 0.272?

n

election

OVB

Indicators

Black et al

Table 4: Columns 3 and 4

Eq for Table 4, Column 3:

 $educ_{i,f} = \beta_0 + \beta_1 no.$ kids in fam_f + β_2 year of birth $FE_i + \beta_3 X_{i,f} + \epsilon_{i,f}$

• Add controls. Any questions about how they do that?

lection

OVB

Black et al

Table 4: Columns 3 and 4

Eq for Table 4, Column 3:

 $educ_{i,f} = \beta_0 + \beta_1 no.$ kids in fam_f + β_2 year of birth $FE_i + \beta_3 X_{i,f} + \epsilon_{i,f}$

- Add controls. Any questions about how they do that?
- What do we learn by comparing columns 3 and 4 to 1 and 2?

・ロト・(四ト・(川下・(日下・(日下)))

lection

OVB

Black et al

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

Table 4: Columns 3 and 4

Eq for Table 4, Column 3:

 $educ_{i,f} = \beta_0 + \beta_1 no.$ kids in fam_f + β_2 year of birth $FE_i + \beta_3 X_{i,f} + \epsilon_{i,f}$

- Add controls. Any questions about how they do that?
- What do we learn by comparing columns 3 and 4 to 1 and 2?
- Controls are important, but they don't account for the entire effect

Black et al

Table 4: Columns 5 and 6

- Column 5
 - what is the regression equation?

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Black et al

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

Table 4: Columns 5 and 6

- Column 5
 - what is the regression equation?

 $educ_{i,f} = \beta_0 + \beta_1 no.$ kids in $fam_f + \beta_2 year$ of birth $FE_i + \beta_3 X_{i,f} + \beta_4 birth$ order $FE_i + \epsilon_{i,f}$

- fix your dataset to have enough variables to estimate this
- how do we interpret these coefficients?

Black et al

Table 4: Columns 5 and 6

- Column 5
 - what is the regression equation?

 $educ_{i,f} = \beta_0 + \beta_1 no.$ kids in $fam_f + \beta_2 year$ of birth $FE_i + \beta_3 X_{i,f} + \beta_4 birth$ order $FE_i + \epsilon_{i,f}$

- fix your dataset to have enough variables to estimate this
- how do we interpret these coefficients?
- then column 6
 - what is the regression equation?

Table 4: Columns 5 and 6

- Column 5
 - what is the regression equation?

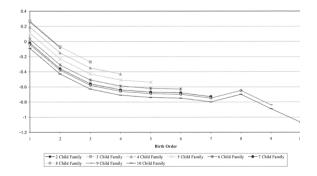
 $educ_{i,f} = \beta_0 + \beta_1 no.$ kids in $fam_f + \beta_2 year$ of birth $FE_i + \beta_3 X_{i,f} + \beta_4 birth$ order $FE_i + \epsilon_{i,f}$

- fix your dataset to have enough variables to estimate this
- how do we interpret these coefficients?
- then column 6
 - what is the regression equation?

 $educ_{i,f} = \beta_0 + \beta_1 kids$ in fam $FE_f + \beta_2 year$ of birth $FE_i + \beta_3 X_{i,f} + \beta_4 birth$ order $FE_i + \epsilon_{i,f}$

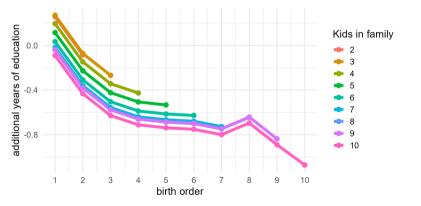
• fix your dataset so that you have enough variables to estimate this

・ロト 《四下 《田下 《田下 』 うらぐ


Black et al

Visual Representation of Findings

- How does this translate to figure 1 (p. 689)?
- Or, what are they plotting there and what does it mean?
 - warning: the note is not correct it says predicted values, but these are coefficients


Visual Representation of Findings

- How does this translate to figure 1 (p. 689)?
- Or, what are they plotting there and what does it mean?
 - warning: the note is not correct it says predicted values, but these are coefficients

My Version: Visual Representation of Findings

- How does this translate to figure 1 (p. 689)?
- Or, what are they plotting there and what does it mean?
 - warning: the note is not correct it says predicted values, but these are coefficients

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Making the Figure, Family Size = 2

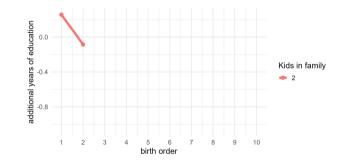
• no info for family size = 1

- no info for family size = 1
- family size of 2
 - first child?

- no info for family size = 1
- family size of 2
 - first child? 0.257

- no info for family size = 1
- family size of 2
 - first child? 0.257
 - second child?

- no info for family size = 1
- family size of 2
 - first child? 0.257
 - second child?
 0.257-0.342


DVB

Indicators

Black et al

Making the Figure, Family Size = 2

- no info for family size = 1
- family size of 2
 - first child? 0.257
 - second child?
 0.257-0.342

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

- family size of 3
 - first child?

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

- family size of 3
 - first child? 0.270

Black et al

- family size of 3
 - first child? 0.270
 - second child?

Black et al

- family size of 3
 - first child? 0.270
 - second child?
 0.270-0.342

Black et al

- family size of 3
 - first child? 0.270
 - second child?
 0.270-0.342
 - third child?

Black et al

- family size of 3
 - first child? 0.270
 - second child?
 0.270-0.342
 - third child?
 0.270-0.538

DVB

Indicators

Black et al

Making the Figure, Family Size = 3

- family size of 3
 - first child? 0.270
 - second child?
 0.270-0.342
 - third child?
 0.270-0.538
- why are the lines in the figure parallel?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

OVB

Indicators

Black et al

Revisiting the Final Figure

Upp 0.0 Find the set of the set

• Which estimate would allow us to plot non-parallel lines?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○○

Black et al

Understanding Table 6

• what's the estimating eqn for table 6, col 1 (p 687)?

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

• what's the estimating eqn for table 6, col 1 (p 687)?

 $educ_{i,f} = \beta_0 + \beta_1$ year of birth $dum_i + \beta_2 X_i + \beta_3 \{1 \text{ if child } 2\}_i + \epsilon_{i,f}$

Black et al

• what's the estimating eqn for table 6, col 1 (p 687)?

 $educ_{i,f} = \beta_0 + \beta_1$ year of birth $dum_i + \beta_2 X_i + \beta_3 \{1 \text{ if child } 2\}_i + \epsilon_{i,f}$

Black et al

- do you have the data for these?
- why are these different than the last column of Table 3?

Admin Selection OVB Indicators
Understanding Table 6

• what's the estimating eqn for table 6, col 1 (p 687)?

 $educ_{i,f} = \beta_0 + \beta_1$ year of birth $dum_i + \beta_2 X_i + \beta_3 \{1 \text{ if child } 2\}_i + \epsilon_{i,f}$

Black et al

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- do you have the data for these?
- why are these different than the last column of Table 3?
- Because they allow the effect of birth order to vary by family size

Next Lecture

- Read Causal Mixtape, Chapter 9.1 and 9.2
- Read linked Milligan article, section 5 optional
- Due next week
 - One page proposal
- Next week handout Problem Set 2, with two week work period