Admin Ri

In-Cla

Curves

E 000000000000 Policy 00 Many Ki 00000 Recap

Lecture 3: Elasticity

September 15, 2020

・ロト 《四下 《田下 《田下 』 うらぐ

Overview

Course Administration

- Ripped from the Headlines
- In-class Example
- Demand Curves Are Not Linear
- **Defining Elasticity**
- **Elasticity and Policy**
- Many Types of Elasticity
- Recap

In-Class 000

E 000000000000 Po

Many 00000 Recap O

Course Administration

1. Reading quiz

Course Administration

- 1. Reading quiz
- 2. Please give feedback on the course set-up google forms link out by email

E 000000000000 Polic 00 Many Kind

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Recap O

Course Administration

- 1. Reading quiz
- 2. Please give feedback on the course set-up google forms link out by email
- 3. Midterm: October 13
 - Last year's midterm is now posted for review (new "exams" sub-section on "lectures" tab)
 - Next week I'll post instructions on how to post a pdf so you can practice
 - Midterm review with TA Dan October 10, 10 am to noon in his zoom room (see Piazza)

E 00000000000 Pol

Many Kin 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Recap O

Course Administration

- 1. Reading quiz
- 2. Please give feedback on the course set-up google forms link out by email
- 3. Midterm: October 13
 - Last year's midterm is now posted for review (new "exams" sub-section on "lectures" tab)
 - Next week I'll post instructions on how to post a pdf so you can practice
 - Midterm review with TA Dan October 10, 10 am to noon in his zoom room (see Piazza)
- 4. Any questions or outstanding issues?

E 000000000000 Policy 00 Many K 00000 Recap O

How What You're Learning is Policy-Relevant

Ripped from Headlines presentation(s)

As a reminder, next week

Afternoon

Finder	Presenter			
Alie Mihuta	Merritt Tollison			
Dina Pinsky	Chris Daly			

Evening

Finder	Presenter		
Trey Johnston	Ellaina Williams		
Sarah Fritz	Laura Brennan		
Alek Libbin	Emma Herman		

E 00000000000 Poli

Many Ki 00000

Recap

Arlington and Uber

Wash Po on Arlington and Uber, or pdf version here

• From the article, what policy is Arlington considering?

E 00000000000 Polic 00 Many Kind

Recap

Arlington and Uber

Wash Po on Arlington and Uber, or pdf version here

- From the article, what policy is Arlington considering?
- Is this policy a change to supply or demand?

= 00000000000 Polic

Many Kin 00000

Recap

Arlington and Uber

Wash Po on Arlington and Uber, or pdf version here

- From the article, what policy is Arlington considering?
- Is this policy a change to supply or demand?
- Given this change in supply, what is the relevant elasticity for the county to consider to understand how much the equilibrium quantity will change?

What Should We Expect?

• Does the price the transit consumer faces change?

E 0000000000 Policy 00 ny Kinds 200

Recap O

What Should We Expect?

- Does the price the transit consumer faces change?
 - From an individual's perspective, what goes into the "price" of riding the bus, in addition to the price of the bus?

000

What Should We Expect?

- Does the price the transit consumer faces change?
 - From an individual's perspective, what goes into the "price" of riding the bus, in addition to the price of the bus?
 - How do you think this policy changes the total price of using transit? •

In-Class

E 0000000000 Policy 00 Many Kinds 00000 Recap O

What Should We Expect?

- Does the price the transit consumer faces change?
 - From an individual's perspective, what goes into the "price" of riding the bus, in addition to the price of the bus?
 - How do you think this policy changes the total price of using transit?
- Do you think it's a good idea to linearly extrapolate from the original demand curve to predict the demand for the uber-like product?

In-Class

E 0000000000 cy M

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Recap O

What Should We Expect?

- Does the price the transit consumer faces change?
 - From an individual's perspective, what goes into the "price" of riding the bus, in addition to the price of the bus?
 - How do you think this policy changes the total price of using transit?
- Do you think it's a good idea to linearly extrapolate from the original demand curve to predict the demand for the uber-like product?
- Do you think the price elasticity of transit w/r/t price is higher or lower than that of driving w/r/t gas price?

Read more about this issue here.

In-Class Problems

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

- GLS, Chapter 4
- Use Numbers 1 of 3 due Lecture 5

Admin	RFH	In-Class	Curves	E	Policy	Many Kinds	Recap
o	o	000	•000000000000	00000000000	00	00000	O

Online Section: Lecture 3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Admin	RFH	In-Class	Curves	E	Policy	Many Kinds	Recap
0	0	000			00	00000	0

Demand Curves Are Not Linear

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

E 00000000000 Policy 00 Many Kinds 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Recap O

Demand Curves are Not Linear

- 1. What do we mean by linear?
- 2. Implications of linear curve
- 3. Building a non-linear curve
- 4. Example of why the shape matters

RFH	In-Class	Curves	E	Policy	Many Kinds
0	000	00000000000	0000000000	00	00000

What Do We Mean By Linear?

- A linear function can be written as y = mx + b
- If b is zero (y = mx), then a 5-unit change in $x \to 5^*m$ -unit change in y
- If *b* is not zero, this isn't exactly true. However, the slope is always the same everywhere

Implications of a Linear Demand Curve

- There is a price sufficiently high that no one wants to consume the good
- At a price of zero, there is a finite quantity demanded
- Implies that many small changes in price always have the same impact as an equivalent large change in price

Implications of a Linear Demand Curve

- There is a price sufficiently high that no one wants to consume the good
- At a price of zero, there is a finite quantity demanded
- Implies that many small changes in price always have the same impact as an equivalent large change in price → this may be quite wrong

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Where a Demand Curve Comes From

Thanks to Hal Varian's textbook

Let's assume we're interested in the market for apartments in a medium-sized college town. Further assume that

- there are two types of apartments: near and far from university
- near apartments are better
- if you don't get an apartment near, you can get one far at a known fixed price
- all apartments are identical
- each person wants only one apartment

We are interested in the price of the near apartments.

Putting Together a Demand Curve

- Reservation price is the "maximum willingness to pay for something"
- What is the highest reservation price of anyone in this market? \rightarrow this is the top of the demand curve
- As we lower the price one dollar, how many additional people want an apartment? This is ${\cal Q}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Another dollar? This is the next (Q, P) on the curve

Ρ

Putting Together a Demand Curve: In Pictures

Q < => < => < \\E_> < \\E_> \\E_> \\E_> \\E_\ \\E_\ \\E_\ \\E_\ \\E_\ \\U_\\C

With Many Steps, Imagine a Curve

Why the Shape of the Curve Matters: Avocados!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- 1914 US puts limits on imports of Mexican avocados
- 1994 North American Free Trade Agreement (NAFTA) passes
- 2004 USDA agrees to year-round avocado imports from Mexico
- Domestic producers of avocados
 - form expectations from part of demand curve they observe
 - except that increase in Q will lead to decline in P
- What happens?

Why the Shape of the Curve Matters: Avocados!

- 1914 US puts limits on imports of Mexican avocados
- 1994 North American Free Trade Agreement (NAFTA) passes
- 2004 USDA agrees to year-round avocado imports from Mexico
- Domestic producers of avocados
 - form expectations from part of demand curve they observe
 - except that increase in Q will lead to decline in P
- What happens? Almost no change in P, big increase in Q

Three (Not Mutually Exclusive) Explanations Or, Is Everything We've Learned Wrong?

Curves

- 1. Demand curve is not linear
- 2. Demand increases
- 3. "Price" for big customers includes reliability of supply, so true "price" fell $ightarrow Q\uparrow$

E.3.: "Price" for big customers falls

- Elsewhere, I learned that after the introduction of Mexican avocados, big chains considered putting them in menus
- Major cost component for big chain input is reliability
 - Mexican supply guarantees year-round supply
 - And more reliable supply
- Thus, for big firms, maybe this is now a different market
 - Not a niche product
 - More of a commodity
 - Think of Chipotle as the consumer here
 - What happens to Chipotle consumer surplus with addition of this market?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Admin	RFH	In-Class	Curves	E	Policy	Many Kinds
0	0	000	000000000000	•000000000	00	00000

Defining Elasticity

- Elasticity measures the change in quantity for a given change in price
- Absolutely crucial for policy decisions
- Formally, percentage change in one value relative to percentage change in another

- Elasticity measures the change in quantity for a given change in price
- Absolutely crucial for policy decisions
- Formally, percentage change in one value relative to percentage change in another
- In math, elasticity is

$$E = \frac{\% \Delta Q}{\% \Delta P}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Δ is capital Greek letter delta, denoting change

Curves 0000000 E 000000000000000

Policy 00 Kinds 0

Price Elasticity of Demand

• How responsive are consumers to a change in price?

$$E_D = \frac{\% \Delta Q_D}{\% \Delta P}$$

• Is *E_D* > 0? or < 0?

E 0000000000

Polic 0 00 Many Kind

Recap O

Price Elasticity of Demand

• How responsive are consumers to a change in price?

$$E_D = rac{\% \Delta Q_D}{\% \Delta P}$$

• Is $E_D > 0$? or < 0? $E_D < 0$

Price Elasticity of Demand

• How responsive are consumers to a change in price?

$$E_D = rac{\% \Delta Q_D}{\% \Delta P}$$

• Is
$$E_D > 0$$
? or < 0 ? $E_D < 0$

- If the number of substitutes for this product is large, what does this mean for $|E_D|$?
 - |x| is the absolute value of x, so x if x > 0, and -1 * x if x < 0

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

Price Elasticity of Demand

• How responsive are consumers to a change in price?

$$E_D = rac{\% \Delta Q_D}{\% \Delta P}$$

• Is
$$E_D > 0$$
? or < 0 ? $E_D < 0$

- If the number of substitutes for this product is large, what does this mean for $|E_D|$?
 - |x| is the absolute value of x, so x if x > 0, and -1 * x if x < 0
- The larger the number of substitutes, the more consumers can choose a different product when price increase \rightarrow the larger $|E_D|$

Many Ki 00000

Recap O

Price Elasticity of Supply

• How responsive are producers to a change in price?

$$E_S = \frac{\% \Delta Q_S}{\% \Delta P}$$

• Is
$$E_S > 0$$
? or < 0?

0000000000

Many k

Recap O

Price Elasticity of Supply

• How responsive are producers to a change in price?

$$E_S = \frac{\% \Delta Q_S}{\% \Delta P}$$

• Is $E_S > 0$? or < 0? $E_S > 0$

Price Elasticity of Supply

• How responsive are producers to a change in price?

$$E_S = \frac{\% \Delta Q_S}{\% \Delta P}$$

- Is $E_S > 0$? or < 0? $E_S > 0$
- If producer can easily decrease production, what does this mean for $|E_S|$?

Recap O

Price Elasticity of Supply

• How responsive are producers to a change in price?

$$E_S = rac{\% \Delta Q_S}{\% \Delta P}$$

- Is $E_S > 0$? or < 0? $E_S > 0$
- If producer can easily decrease production, what does this mean for $|E_S|$?
- The more easily the producer can decrease production, the larger $|E_S|$

)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 善 - のへで

• Unit elastic, |E| = 1: any percent changes in prices are equally matched by percent changes in Q

- Unit elastic, |E| = 1: any percent changes in prices are equally matched by percent changes in Q
- Elastic, $\infty > |E| > 1$: responsiveness of numerator greater than change in denominator

- Unit elastic, |E| = 1: any percent changes in prices are equally matched by percent changes in Q
- Elastic, $\infty > |E| > 1$: responsiveness of numerator greater than change in denominator

- Inelastic, $0 < |{\cal E}| < 1$: responsiveness of numerator less than change in denominator

- Unit elastic, |E| = 1: any percent changes in prices are equally matched by percent changes in Q
- Elastic, $\infty > |E| > 1$: responsiveness of numerator greater than change in denominator
- Inelastic, $0 < \left| E \right| < 1$: responsiveness of numerator less than change in denominator
- Perfectly inelastic, |E| = 0: no change in numerator for change in denominator

- Unit elastic, |E| = 1: any percent changes in prices are equally matched by percent changes in Q
- Elastic, $\infty > |E| > 1$: responsiveness of numerator greater than change in denominator
- Inelastic, $0 < \left| E \right| < 1$: responsiveness of numerator less than change in denominator
- Perfectly inelastic, |E| = 0: no change in numerator for change in denominator
- Perfectly elastic, $|E| = \infty$: infinite change in numerator for change in denominator

Drawing Perfectly Inelastic and Perfectly Elastic Demand and Supply

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Drawing Perfectly Inelastic and Perfectly Elastic Demand and Supply

(a) Perfectly inelastic (b) Perfectly elastic

・ロト・日本・日本・ 日本・ シック・

Time Horizon Matters for Elasticity

• Over short time horizons, the behavior of people and firms can be pretty inelastic

• In the long run, everything is elastic

Many Kinds 00000 Recap

Elasticity and Policy

Elasticity and Policy

"Among the models that CBO uses to analyze the economic effects of changes in federal fiscal policy is a life-cycle growth model. That model requires an estimate of [the elasticity of labor supply with respect to price]. CBO incorporates into its analyses an estimate of the [this] elasticity that ranges from 0.27 to 0.53, with a central estimate of 0.40."

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Policy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

"Among the models that CBO uses to analyze the economic effects of changes in federal fiscal policy is a life-cycle growth model. That model requires an estimate of [the elasticity of labor supply with respect to price]. CBO incorporates into its analyses an estimate of the [this] elasticity that ranges from 0.27 to 0.53, with a central estimate of 0.40."

- ightarrow a 1% change in wages causes a 0.4% change in labor supply
- policy makers can change the "price" that workers receive by changing tax rates
- if you want to know how much revenue taxes yield, you need to know how responsive workers are to changes in wages

Elasticity and Policy

Policy

"Among the models that CBO uses to analyze the economic effects of changes in federal fiscal policy is a life-cycle growth model. That model requires an estimate of [the elasticity of labor supply with respect to price]. CBO incorporates into its analyses an estimate of the [this] elasticity that ranges from 0.27 to 0.53, with a central estimate of 0.40."

- ightarrow a 1% change in wages causes a 0.4% change in labor supply
- policy makers can change the "price" that workers receive by changing tax rates
- if you want to know how much revenue taxes yield, you need to know how responsive workers are to changes in wages
- Or, if you want to know how many people will take up Obamacare, you need to know how responsive the uninsured are to changes in the price of insurance

Many Types of Elasticity

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Curves Dooooooooooooooooooo E D0000000000 Policy 00 Many Kinds

<□> <同> <同> < 目> < 目> < 目> < 目> < 目> □ ○ ○ ○

Recap O

Many Types of Elasticities

- Price elasticity of demand and supply
- Income elasticity of demand
- Cross-price elasticity of demand

Many Kinds

• We are interested in the income elasticity of demand

$$E_I^D = \frac{\% \Delta Q^D}{\% \Delta I}$$

• What do you consume more of as your income increases?

Income Elasticity of Demand

Many Kinds

• We are interested in the income elasticity of demand

$$E_I^D = \frac{\% \Delta Q^D}{\% \Delta I}$$

- What do you consume more of as your income increases? These are normal goods, and E>0 (but $E\leq 1$)
- What do you consume less of as your income increases?
Income Elasticity of Demand

· We are interested in the income elasticity of demand

$$E_I^D = \frac{\% \Delta Q^D}{\% \Delta I}$$

- What do you consume more of as your income increases? These are normal goods, and E>0 (but $E\leq 1$)
- What do you consume less of as your income increases? These are inferior goods, and *E* < 0.
- What does mean if $E_I^D > 1$

Many Kinds

Income Elasticity of Demand

• We are interested in the income elasticity of demand

$$E_I^D = \frac{\% \Delta Q^D}{\% \Delta I}$$

- What do you consume more of as your income increases? These are normal goods, and E>0 (but $E\leq 1$)
- What do you consume less of as your income increases? These are inferior goods, and *E* < 0.
- What does mean if $E^D_I > 1$ Your consumption increases more than your income \rightarrow luxury good

Many Kinds

Many Kinds

00000

Contemplate Yourself!

Think of some examples

- What is the sign of the income elasticity of demand for fresh fruit and vegetable consumption?
- Give an example of a normal good and an inferior good

Many Kinds

00000

Cross-Price Elasticity of Demand

How much does your demand for pluots change when the price of apricots increases?

Cross-Price Elasticity of Demand

How much does your demand for pluots change when the price of apricots increases?

$$\mathsf{E}_{XY}^D = rac{\%\Delta Q_X^D}{\%\Delta P_Y}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- The responsiveness of quantity demanded of good X to price of good Y
- If E_{XY}^D is positive, are X and Y substitutes or complements?

Cross-Price Elasticity of Demand

How much does your demand for pluots change when the price of apricots increases?

$$\mathsf{E}_{XY}^D = rac{\%\Delta Q_X^D}{\%\Delta P_Y}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- The responsiveness of quantity demanded of good X to price of good Y
- If E_{XY}^D is positive, are X and Y substitutes or complements?

Policy examples, please!

Curves 00000000000 E 0000000000 Policy 00 Many Kinds 00000

Recap

What We Did This Class

- 1. Non-linear demand curves
- 2. Defining elasticity
- 3. Why elasticity matters for policy
- 4. Many kinds of elasticity